Surface Modification of Titanium and Its Alloy by Anodic Oxidation for Dental Implant

  • Chapter
  • First Online:
Implant Surfaces and their Biological and Clinical Impact

Abstract

Anodic oxidation has been successfully used as a surface modification for orthopedic and dental implants in the past few decades. This chapter will overview the anodic oxidation of titanium and will discuss about processing parameters, microstructure, and composition. Finally, it will clarify the biological responses and the mechanism of enhanced osteoblast functions on the anodized titanium which is pertinent to dental implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sul YT, Johanson CB, Jeong Y, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys. 2001;23:329–46.

    Article  PubMed  Google Scholar 

  2. Diamanti MV, Pedeferri MP. Effect of anodic oxidation parameters on the titanium oxide formation. Corros Sci. 2007;49:939–48.

    Article  Google Scholar 

  3. Woodman JL, Jacobs JJ, Galante JO, Urban RM. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: a long-term study. J Orthop Res. 1984;1:421–30.

    Article  PubMed  Google Scholar 

  4. Osborn JF, Willich P, Meenen N. The release of titanium into human bone from a titanium implant coated with plasma-sprayed titanium. In: Heimke G, Soltesz U, Lee AJC, editors. Clinical implant materials, Advances in Biomaterials, vol. 9. Amsterdam: Elsevier; 1990. p. 75–80.

    Google Scholar 

  5. Lodding AR, Fischer PM, Odelius HA, et al. Secondary ion mass spectrometry in the study of biomineralizations and biomaterials. Anal Chim Acta. 1990;241:299–314.

    Article  Google Scholar 

  6. Solar RJ, Pollack SR, Korostoff E. In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implants. J Biomed Mater Res. 1979;13:217–50.

    Article  PubMed  Google Scholar 

  7. Ektessabi AM, Otsuka T, Tsuboi Y, Yokoyama K, Albrektsson T, Sennerby L, Johansson C. Application of micro beam PIXE to detection of titanium ion release from dental and orthopaedic implants. Int J PIXE. 1994;4:81–91.

    Article  Google Scholar 

  8. Ducheyne P, Willems G, Martens M, Helsen J. In vivo metal-ion release from porous titanium-fiber material. J Biomed Mater Res. 1984;18:293–308.

    Article  PubMed  Google Scholar 

  9. Healy KE, Ducheyne P. The mechanisms of passive dissolution of titanium in a model physiological environment. J Biomed Mater Res. 1992;26:319–38.

    Article  PubMed  Google Scholar 

  10. Schliephake H, Reiss G, Urban R, Neukam FW, Guckel S. Metal release from titanium fixtures during placement in the mandible: an experimental study. Int J Oral Maxillofac Implants. 1993;8:502–11.

    PubMed  Google Scholar 

  11. Larsson C, Thomsen P, Lausmaa J, Rodahl M, Kasemo B, Ericson LE. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials. 1994;15:1062–74.

    Article  PubMed  Google Scholar 

  12. Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials. 1996;17:605–16.

    Article  PubMed  Google Scholar 

  13. Hazan R, Brener R, Oron U. Bone growth to metal implants is regulated by their surface chemical properties. Biomaterials. 1993;14:570–4.

    Article  PubMed  Google Scholar 

  14. Kitsugi T, Nakamura T, Oka M, Yan WQ, Goto T, Shibuya T, Kokubo T, Miyaji S. Bone bonding behavior of titanium and its alloys when coated with titanium oxide (TiO2) and titanium silicate (Ti5Si3). J Biomed Mater Res. 1996;32:149–56.

    Google Scholar 

  15. Brunette DM, Tengvall P, Textor M, Thomsen P. Mechanical, thermal, chemical and electrochemical surface treatment of titanium. In: Thomsen P, editor. Titanium in medicine. New York: Springer; 2001. p. 232.

    Chapter  Google Scholar 

  16. Kim HM, Miyaji F, Kokubo T, Nakamura T. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci Mater Med. 1997;8:341–7.

    Article  PubMed  Google Scholar 

  17. Kokubo T, Kim HM, Kawashita M, Nakamura T. Bioactive metal: preparation and properties. J Mater Sci Mater Med. 2004;15:99–107.

    Article  PubMed  Google Scholar 

  18. Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH. Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4 V with different pretreatments. J Mater Sci Mater Med. 1999;10:35–46.

    Article  PubMed  Google Scholar 

  19. Bordji K, Jouzeau JY, Mainard D, Payan E, Netter P, Rie KT, Stucky T, Hage-Ali M. Cytocompatibility of Ti-6Al-4 V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials. 1996;17:929–40.

    Article  PubMed  Google Scholar 

  20. Oh HJ, Lee JH, Jeong Y, Kim YJ, Chi CS. Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. Surf Coat Technol. 2004;198:247–52.

    Article  Google Scholar 

  21. Kim HM, Miyaji F, Kokubo T, Kitsugi T, Nakamura T. Preparation of bioactive titanium and alloys via simple chemical surface treatment. J Biomed Mater Res. 1996;32:409–17.

    Article  PubMed  Google Scholar 

  22. Marino CEB, Nascente PAP, Biaggio SR, Rocha-Filho RC, Bocchi N. XPS characterization of anodic titanium oxide films grown in phosphate buffer solution. Thin Solid Films. 2004;468:109–12.

    Article  Google Scholar 

  23. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  PubMed  Google Scholar 

  24. Jon.šov L, Müller FA, Helebrant A, Strnad J, Greil P. Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer. Biomaterials. 2002;23:3095–101.

    Article  Google Scholar 

  25. Yang B, Uchida M, Kim HM, Zhang X, Kukobo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004;25:1003–10.

    Article  PubMed  Google Scholar 

  26. Brunette DM, Tengvall P, Textor M, Thomsen P. Mechanical, thermal, chemical and electrochemical surface treatment of titanium. In: Thomsen P, editor. Titanium in medicine. New York: Springer; 2001. p. 171.

    Chapter  Google Scholar 

  27. Jaeggi C, Kern P, Michler J, Zehnder T, Siegenthaler H. Anodic thin films on titanium used as masks for surface micropatterning of biomedical devices. Surf Coat Technol. 2005;200:1913–9.

    Article  Google Scholar 

  28. Chiesa R, Sandrini E, Santin M, Rondelli G, Cigada A. Osteointegration of titanium and its alloys by anodic spark deposition and other electrochemical techniques: a review. J Appl Biomater Biomech. 2003;1:91.

    PubMed  Google Scholar 

  29. Delplancke JL, Winand R. Galvanostatic anodization of titanium – I. Structures and composition of the anodic films. Electrochim Acta. 1973;33:1539–47.

    Article  Google Scholar 

  30. Schüpbach P, Glauser R, Rocci A, Martignoni M, Sennerby L, Lundgren A, Gottlow J. The human bone-oxidized titanium implant interface: a light microscopic, scanning electron microscopic, back-scatter scanning electron microscopic, and energy-dispersive x-ray study of clinically retrieved dental implants. Clin Implant Dent Relat Res. 2005;7 Suppl 1:S36–43.

    Article  PubMed  Google Scholar 

  31. Sawase T, Jimbo R, Wennerberg A, Suketa N, Tanaka Y, Atsuta M. A novel characteristic of porous titanium oxide implants. Clin Oral Implants Res. 2007;18:680–5.

    Article  PubMed  Google Scholar 

  32. Lausmaa J, Kasemo B, Mattson H. Surface spectroscopic characterization of titanium implant materials. Appl Surf Sci. 1990;44:133–46.

    Article  Google Scholar 

  33. Lausmaa J, Kasemo B, Mattson H, Odelius H. Multi-technique surface characterization of oxide films on electropolished and anodically oxidized titanium. Appl Surf Sci. 1990;45:189–200.

    Article  Google Scholar 

  34. Park YL, Shin KH, Song HJ. Effects of anodizing conditions on bond strength of anodically oxidized film to titanium substrate. Appl Surf Sci. 2007;253:6013–8.

    Article  Google Scholar 

  35. Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials. 2003;24:3893–907.

    Article  PubMed  Google Scholar 

  36. Hanawa T, Kaga M, Itoh Y, Echizenya T, Oguchi H, Ota M. Cytotoxicities of oxides, phosphates and sulphides of metals. Biomaterials. 1992;13:20–4.

    Article  PubMed  Google Scholar 

  37. Lee JH, Kim SE, Kim YJ, Chi CS, Oh HJ. Effects of microstructure of anodic titania on the formation of bioactive compounds. Mater Chem Phys. 2006;98:39–43.

    Article  Google Scholar 

  38. de Sena LA, Rocha NCC, Andrade MC, Soares GA. Bioactivity assessment of titanium sheets electrochemically coated with thick oxide film. Surf Coat Technol. 2003;166:254–8.

    Article  Google Scholar 

  39. Sul YT, Johansson CB, Kang Y, Jeon DG, Albrektsson T. Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric acid incorporation. Clin Implant Dent Relat Res. 2002;4:78–87.

    Article  PubMed  Google Scholar 

  40. Zhu X, Chen J, Scheideler C, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004;25:4087–103.

    Article  PubMed  Google Scholar 

  41. Kurze P, Krysmann W, Schneider HG. Application fields of ANOF layer and composites. Cryst Res Technol. 1986;21:1603–9.

    Article  Google Scholar 

  42. Ishizawa H, Ogino M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. J Biomed Mater Res. 1995;29:1071.

    Article  PubMed  Google Scholar 

  43. Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res. 1995;29:65.

    Article  PubMed  Google Scholar 

  44. Rodriguez R, Kim K, Ong JL. In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment. J Biomed Mater Res A. 2003;65:352–8.

    Article  PubMed  Google Scholar 

  45. Suh JY, Jang BC, Zhu X, Ong JL, Kim K. Effect of hydrothermally treated anodic oxide films on osteoblast attachment and proliferation. Biomaterials. 2003;24:347.

    Article  PubMed  Google Scholar 

  46. Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, Kern D. Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs. 2004;178:13–22.

    Article  PubMed  Google Scholar 

  47. Zhao G, Zinger O, Schwartz Z, Wieland M, Landolt D, Boyan BD. Osteoblast-like cells are sensitive to submicron-scale surface structure. Clin Oral Implants Res. 2006;17:258–64.

    Article  PubMed  Google Scholar 

  48. Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater. 2007;3:573–85.

    Article  PubMed  Google Scholar 

  49. Bronzino JD. Biomedical engineering handbook. New York: CRC Press; 1995. p. 274.

    Google Scholar 

  50. Li B, Li Y, Li J, Fu X, Li H, Wang H, **n S, Zhou L, Liang C, Li C. Influence of nanostructures on the biological properties of Ti implants after anodic oxidation. J Mater Sci Mater Med. 2014;25:199–205.

    Article  PubMed  Google Scholar 

  51. Kim MH, Lee SY, Kim MJ, Kim SK, Heo SJ, Koak JY. Effect of biomimetic deposition on anodized titanium surfaces. J Dent Res. 2011;90:711–6.

    Article  PubMed  Google Scholar 

  52. Giordano C, Saino E, Rimondini L, Pedeferri MP, Visai L, Cigada A, Chiesa R. Electrochemically induced anatase inhibits bacterial colonization on titanium grade 2 and Ti6Al4V alloy for dental and orthopedic devices. Colloids Surf B Biointerfaces. 2011;88:648–55.

    Article  PubMed  Google Scholar 

  53. Kang MK, Moon SK, Kim KM, Kim KN. Antibacterial effect and cytocompatibility of nano-structured TiO(2) film containing Cl. Dent Mater J. 2011;30:790–8.

    Google Scholar 

  54. Son WW, Zhu X, Shin HI, Ong JL, Kim KH. In vivo histological response to anodized and anodized/hydrothermally treated titanium implants. J Biomed Mater Res B Appl Biomater. 2003;66B:520–5.

    Article  Google Scholar 

  55. Henry P, Tan AE, Allan BP. Removal torque comparison of Tiunite and turned implants in the Greyhound dog mandible. Appl Osseointegration Res. 2000;1:15–7.

    Google Scholar 

  56. Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxide. Clin Oral Implants Res. 2002;13:252–9.

    Article  PubMed  Google Scholar 

  57. Sul YT, Johansson CB, Roser K, Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodized implants. Biomaterials. 2002;23:1809–17.

    Article  PubMed  Google Scholar 

  58. Sul YT, Johansson P, Chang BS, Byon ES, Jeong Y. Bone tissue responses to Mg-incorporated oxidized implants and machine-turned implants in the rabbit femur. J Appl Biomater Biomech. 2005;3:18–28.

    PubMed  Google Scholar 

  59. Jimbo R, Ono D, Hirakawa Y, Odatsu T, Tanaka T, Sawase T. Accelerated photo-induced hydrophilicity promotes osseointegration: an animal study. Clin Implant Dent Relat Res. 2011;13:79–85.

    Article  PubMed  Google Scholar 

  60. Albouy JP, Abrahamsson I, Berglundh T. Spontaneous progression of experimental peri-implantitis at implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol. 2012;39:182–7.

    Article  PubMed  Google Scholar 

  61. Hall J, Lausmaa J. Properties of a new porous oxide surface on titanium implants. Appl Osseointegration Res. 2001;1:5–8.

    Google Scholar 

  62. Quirynen M, Van Assche N. RCT comparing minimally with moderately rough implants. Part 2: microbial observations. Clin Oral Implants Res. 2012;23:625–34.

    Article  PubMed  Google Scholar 

  63. Van Assche N, Coucke W, Teughels W, Naert I, Cardoso MV, Quirynen M. RCT comparing minimally with moderately rough implants. Part 1: clinical observations. Clin Oral Implants Res. 2012;23:617–24.

    Article  PubMed  Google Scholar 

  64. Nicu EA, Van Assche N, Coucke W, Teughels W, Quirynen M. RCT comparing implants with turned and anodically oxidized surfaces: a pilot study, a 3-year follow-up. J Clin Periodontol. 2012;39:1183–90.

    Article  PubMed  Google Scholar 

  65. Jokstad A, Alkumru H. Immediate function on the day of surgery compared with a delayed implant loading process in the mandible: a randomized clinical trial over 5 years. Clin Oral Implants Res. 2013. doi:10.1111/clr.12279 [Epub ahead of print].

    PubMed  Google Scholar 

  66. Jokstad A, Alkumru H. Immediate function on the day of surgery compared with a delayed implant loading process in the mandible: a randomized clinical trial over 5 years. Clin Oral Implants Res. 2013;28:891–5.

    Google Scholar 

  67. Sawase T, Wennerberg A, Hallgren C, Miyamoto I, Albrektsson T. Atomic force microscopic study of commercially available implant abutments. Clin Implant Dent Relat Res. 1999;1:92–7.

    Article  PubMed  Google Scholar 

  68. Sawase T, Wennerberg A, Hallgren C, Albrektsson T, Baba K. Chemical and topographical surface analysis of five different implant abutments. Clin Oral Implants Res. 2000;11:44–50.

    Article  PubMed  Google Scholar 

  69. Albrektsson T, Wennerberg A. Oral implant surfaces: part 1–review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont. 2004;17:536–43.

    PubMed  Google Scholar 

  70. Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25:4731–9.

    Article  PubMed  Google Scholar 

  71. Baun WL. Formation of porous films on titanium alloys by anodization. Surf Technol. 1980;11:421–30.

    Article  Google Scholar 

  72. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res. 2001;16:3331–4.

    Article  Google Scholar 

  73. Raja KS, Misra M, Paramguru K. Formation of self-ordered nanotubular structure of anodic oxide layer on titanium. Electrochim Acta. 2005;51:154–65.

    Article  Google Scholar 

  74. Varkey M, Gittens SA, Uludag H. Growth factor delivery for bone tissue repair: an update. Expert Opin Drug Deliv. 2004;1:19–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sawase DDS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sawase, T., Watanabe, I. (2015). Surface Modification of Titanium and Its Alloy by Anodic Oxidation for Dental Implant. In: Wennerberg, A., Albrektsson, T., Jimbo, R. (eds) Implant Surfaces and their Biological and Clinical Impact. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45379-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45379-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45378-0

  • Online ISBN: 978-3-662-45379-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation