Cerebral Blood Flow Measurement with Oxygen-15 Water Positron Emission Tomography

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

The human brain receives approximately 15 % of the cardiac output and therefore is the most demanding organ in respect to blood flow supply. This fact emphasizes the importance of perfusion as a key factor in a variety of cerebrovascular and other diseases including stroke, migraine, and brain tumors. Today, numerous imaging techniques are able to visualize brain perfusion, but only few of them provide quantitative information. In the field of modern in vivo imaging techniques, positron emission tomography (PET) is considered to be the gold standard to give reliable results about major aspects of cerebral physiology. [15O]H2O allows for quantitative cerebral blood flow (CBF) measurement within a few minutes, and subsequent 15O imaging can provide precise information on oxygen metabolism like cerebral oxygen metabolism and oxygen extraction fraction. As a result, PET has become an extremely useful research tool for defining cerebral blood flow and physiology. However, complex methodological logistics and a limited availability of the imaging system hamper the widespread use of CBF PET in clinical routine. The chapter aims at summarizing the radiosynthesis, data acquisition, and analysis, as well as major preclinical and clinical applications of [15O]H2O PET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 215.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 269.50
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

c a(t):

Arterial input function (arterial activity concentration over time)

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

CMRO2 :

Cerebral metabolic rate of oxygen

CT:

Computed tomography

c v(t):

Activity concentration in venous blood over time

f a :

Arterial blood flow

GBq:

Gigabecquerel

GM:

Gray matter

IAP:

Iodoantipyrine

iNO:

Inhaled nitric oxide

k :

Washout-constant

kBq:

Kilobecquerel

MBq:

Megabecquerel

MRI:

Magnetic resonance imaging

NO:

Nitric oxide

OEF:

Oxygen extraction fraction

PET:

Positron emission tomography

rCBF:

Regional cerebral blood flow

ROI:

Region of interest

S/N:

Signal-to-noise

SPECT:

Single-photon emission computed tomography

TSE:

Turbo spin echo

V d :

Partition coefficient

V tissue :

Tissue volume

WM:

White matter

Xe:

Xenon

References

  • Andersson JL, Muhr C, Lilja A et al (1997) Regional cerebral blood flow and oxygen metabolism during migraine with and without aura. Cephalalgia 17(5):570–579

    Article  CAS  PubMed  Google Scholar 

  • Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12(6):723–725

    Article  CAS  PubMed  Google Scholar 

  • Baron JC (2001) Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 11 Suppl 1:2–8

    Article  CAS  PubMed  Google Scholar 

  • Baron JC, Bousser MG, Comar D et al (1981) “Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans Am Neurol Assoc 105:459–461

    CAS  PubMed  Google Scholar 

  • Barthel H, Hesse S, Dannenberg C et al (2001) Prospective value of perfusion and X-ray attenuation imaging with single-photon emission and transmission computed tomography in acute cerebral ischemia. Stroke 32(7):1588–1597

    Article  CAS  PubMed  Google Scholar 

  • Beaver J, Finn RD, Hupf HB et al (1976) A new method for the production of high concentration oxygen-15 labeled carbon dioxide with protons. Appl Radiat Isot 27:195–197

    Article  CAS  Google Scholar 

  • Berridge MS, Terries AH, Cassidy EH et al (1990) Low-carrier production of [15O]oxygen, water and carbon monoxide. Appl Radiat Isot 41:1173–1175

    Article  CAS  Google Scholar 

  • Boltze J, Forschler A, Nitzsche B et al (2008) Permanent middle cerebral artery occlusion in sheep: a novel large animal model of focal cerebral ischemia. J Cereb Blood Flow Metab 28(12):1951–1964

    Article  PubMed  Google Scholar 

  • Bolwig TG, Lassen NA (1975) The diffusion permeability to water of the rat blood–brain barrier. Acta Physiol Scand 93(3):415–422

    Article  CAS  PubMed  Google Scholar 

  • Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol 102(2):511–516

    Article  CAS  PubMed  Google Scholar 

  • Bruce DA, Langfitt TW, Miller JD et al (1973) Regional cerebral blood flow, intracranial pressure, and brain metabolism in comatose patients. J Neurosurg 38(2):131–144

    Article  CAS  PubMed  Google Scholar 

  • Calamante F, Morup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52(4):789–797

    Article  PubMed  Google Scholar 

  • Carroll TJ, Teneggi V, Jobin M et al (2002) Absolute quantification of cerebral blood flow with magnetic resonance, reproducibility of the method, and comparison with H215O positron emission tomography. J Cereb Blood Flow Metab 22:1149–1156

    Article  PubMed  Google Scholar 

  • Chen JJ, Wieckowska M, Meyer E et al (2008) Cerebral blood flow measurement using fMRI and PET: a cross-validation study. Int J Biomed Imaging 2008:516359

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiron C, Raynaud C, Maziere B et al (1992) Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33(5):696–703

    CAS  PubMed  Google Scholar 

  • Clark JC, Crouzel C, Meyer GJ et al (1987) Current methodology for oxygen-15 production for clinical use. Int J Rad Appl Instrum A 38(8):597–600

    Article  CAS  PubMed  Google Scholar 

  • Clark JC, Tochon-Danguy H (1991) R2D2, - a bedside [oxygen-15]water infuser. PSI Proceedings 92-01, pp 234–235. ISSN 1019-6447. Proc. IV. Int. Workshop on Targetry and Target Chemistry; Sept 9-12th; Villigen, Switzerland, 1991. (Abstract)

    Google Scholar 

  • Cohen RM, Andreason PJ, Doudet DJ et al (1997) Opiate receptor avidity and cerebral blood flow in Alzheimer’s disease. J Neurol Sci 148(2):171–180

    Article  CAS  PubMed  Google Scholar 

  • Cutrer FM, O’Donnell A, Sanchez del Rio M (2000) Functional neuroimaging: enhanced understanding of migraine pathophysiology. Neurology 55(9 Suppl 2):S36–S45

    CAS  PubMed  Google Scholar 

  • Eichling JO, Raichle ME, Grubb RL et al (1974) Evidence of the limitations of water as a freely diffusible tracer in brain of the rhesus monkey. Circ Res 35(3):358–364

    Article  CAS  PubMed  Google Scholar 

  • Feeney DM, Baron JC (1986) Diaschisis. Stroke 17(5):817–830

    Article  CAS  PubMed  Google Scholar 

  • Feigin VL, Lawes CMM, Bennett DA et al (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8(4):355–369

    Article  PubMed  Google Scholar 

  • Feng C, Narayana S, Lancaster JL et al (2004) CBF changes during brain activation: fMRI vs. PET. Neuroimage 22(1):443–446

    Article  PubMed  Google Scholar 

  • Fox PT, Mintun MA, Reiman EM et al (1988) Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J Cereb Blood Flow Metab 8(5):642–653

    Article  CAS  PubMed  Google Scholar 

  • Frackowiak RS, Lenzi GL, Jones T et al (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4(6):727–736

    Article  CAS  PubMed  Google Scholar 

  • Gaillard WD, Fazilat S, White S et al (1995) Interictal metabolism and blood flow are uncoupled in temporal lobe cortex of patients with complex partial epilepsy. Neurology 45(10):1841–1847

    Article  CAS  PubMed  Google Scholar 

  • Griffiths PD, Hoggard N, Dannels WR et al (2001) In vivo measurement of cerebral blood flow: a review of methods and applications. Vasc Med 6(1):51–60

    CAS  PubMed  Google Scholar 

  • Hall R (1971) Vascular injuries resulting from arterial puncture of catheterization. Br J Surg 58(7):513–516

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama T, Sakaki S, Nakamura K et al (1992) Improvement in local cerebral blood flow measurement in gerbil brains by prevention of postmortem diffusion of 14Ciodoantipyrine. J Cereb Blood Flow Metab 12(2):296–300

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Rosner G (1983) Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14(3):294–301

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Graf R, Wienhard K et al (1994) Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 14(6):892–902

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Graf R, Lottgen J et al (1997) Repeat positron emission tomographic studies in transient middle cerebral artery occlusion in cats: residual perfusion and efficacy of postischemic reperfusion. J Cereb Blood Flow Metab 17(4):388–400

    Article  CAS  PubMed  Google Scholar 

  • Heiss W, Kracht L, Grond M et al (2000) Early [11C]flumazenil/H2O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy. Stroke 31(2):366–369

    Article  CAS  PubMed  Google Scholar 

  • Herscovitch P, Raichle ME (1985) What is the correct value for the brain–blood partition coefficient for water? J Cereb Blood Flow Metab 5(1):65–69

    Article  CAS  PubMed  Google Scholar 

  • Herscovitch P, Raichle ME, Kilbourn MR et al (1987) Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using 15Owater and 11Cbutanol. J Cereb Blood Flow Metab 7(5):527–542

    Article  CAS  PubMed  Google Scholar 

  • Hino A, Imahori Y, Ten** H et al (1990) Metabolic and hemodynamic aspects of peritumoral low-density areas in human brain tumor. Neurosurgery 26(4):615–621

    Article  CAS  PubMed  Google Scholar 

  • Hoeffner EG (2005) Cerebral perfusion imaging. J Neuroophthalmol 25(4):313–320

    Article  PubMed  Google Scholar 

  • Ibaraki M, Shimosegawa E, Miura S et al (2004) PET measurements of CBF, OEF, and CMRO2 without arterial sampling in hyperacute ischemic stroke: method and error analysis. Ann Nucl Med 18(1):35–44

    Article  PubMed  Google Scholar 

  • Iida H, Jones T, Miura S (1993) Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography. J Nucl Med 34(8):1333–1340

    CAS  PubMed  Google Scholar 

  • Jay TM, Lucignani G, Crane AM et al (1988) Measurement of local cerebral blood flow with [14C]iodoantipyrine in the mouse. J Cereb Blood Flow Metab 8(1):121–129

    Article  CAS  PubMed  Google Scholar 

  • Jezzard P (1998) Advances in perfusion MR imaging. Radiology 208(2):296–299

    CAS  PubMed  Google Scholar 

  • Kahane P (1999) An H215O-PET study of cerebral blood flow changes during focal epileptic discharges induced by intracerebral electrical stimulation. Brain 122(10):1851–1865

    Article  PubMed  Google Scholar 

  • Kanno I, Iida H, Miura S et al (1991) Optimal scan time of oxygen-15-labeled water injection method for measurement of cerebral blood flow. J Nucl Med 32(10):1931–1934

    CAS  PubMed  Google Scholar 

  • Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by use of nitrous oxide in low concentrations. Am J Physiol 143:53–66

    CAS  Google Scholar 

  • Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41

    CAS  PubMed  Google Scholar 

  • Kimura H, Kado H, Koshimoto Y et al (2005) Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging 22(2):189–198

    Article  PubMed  Google Scholar 

  • Krohn K, Link JM, Lewellen TK et al (1986) The use of 50 MeV protons to produce C-11 and O-15. J Labelled Compd Radiopharm 23:1190–1192

    Google Scholar 

  • Kudo K, Sasaki M, Yamada K et al (2010) Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology 254(1):200–209

    Article  PubMed  Google Scholar 

  • Kuge Y, Yokota C, Tagaya M et al (2001) Serial changes in cerebral blood flow and flow-metabolism uncoupling in primates with acute thromboembolic stroke. J Cereb Blood Flow Metab 21(3):202–210

    Article  CAS  PubMed  Google Scholar 

  • Lammertsma AA (1994) Noninvasive estimation of cerebral blood flow. J Nucl Med 35(11):1878–1879

    CAS  PubMed  Google Scholar 

  • Lass P, Koseda M, Romanowicz G et al (1998) Cerebral blood flow assessed by brain SPECT with 99mTc-HMPAO utilising the acetazolamide test in systemic lupus erythematosus. Nucl Med Rev Cent East Eur 1(1):20–24

    CAS  PubMed  Google Scholar 

  • Lassen NA, Ingvar DH (1961) The blood flow of the cerebral cortex determined by radioactive krypton. Experientia 17:42–43

    Article  CAS  PubMed  Google Scholar 

  • Law I, Iida H, Holm S et al (2000) Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation. J Cereb Blood Flow Metab 20(8):1252–1263

    Article  CAS  PubMed  Google Scholar 

  • Leenders KL (1994) PET: blood flow and oxygen consumption in brain tumors. J Neurooncol 22(3):269–273

    Article  CAS  PubMed  Google Scholar 

  • Links JM, Zubieta JK, Meltzer CC et al (1996) Influence of spatially heterogeneous background activity on “hot object” quantitation in brain emission computed tomography. J Comput Assist Tomogr 20(4):680–687

    Article  CAS  PubMed  Google Scholar 

  • Machleder HI, Sweeney JP, Barker WF (1972) Pulseless arm after brachial-artery catheterisation. Lancet 1(7747):407–409

    Article  CAS  PubMed  Google Scholar 

  • Markus HS (2004) Cerebral perfusion and stroke. J Neurol Neurosurg Psychiatry 75(3):353–361

    Article  CAS  PubMed  Google Scholar 

  • Martin WR, Powers WJ, Raichle ME (1987) Cerebral blood volume measured with inhaled C150 and positron emission tomography. J Cereb Blood Flow Metab 7(4):421–426

    Article  CAS  PubMed  Google Scholar 

  • Matsuda M, Lee H, Kuribayashi K et al (1996) Comparative study of regional cerebral blood flow values measured by Xe CT and Xe SPECT. Acta Neurol Scand Suppl 166:13–16

    Article  CAS  PubMed  Google Scholar 

  • Matthew E, Andreason P, Carson RE et al (1993) Reproducibility of resting cerebral blood flow measurements with H2(15)O positron emission tomography in humans. J Cereb Blood Flow Metab 13(5):748–754

    Article  CAS  PubMed  Google Scholar 

  • Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6(12):731–744

    CAS  PubMed  Google Scholar 

  • Mulholland GK, Kilbourn MR, Moskwa JJ (1990) Direct simultaneous production of 15Owater and 13Nammonia or 18Ffluoride ion by 26 MeV proton irradiation of a double chamber water target. Int J Rad Appl Instrum A 41(12):1193–1199

    Article  CAS  PubMed  Google Scholar 

  • Obrist WD, Thompson HK JR, Wang HS et al (1975) Regional cerebral blood flow estimated by 133-xenon inhalation. Stroke 6(3):245–256

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard L, Weisskoff RM, Chesler DA et al (1996a) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36(5):715–725

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard L, Sorensen AG, Kwong KK et al (1996b) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36(5):726–736

    Article  CAS  PubMed  Google Scholar 

  • Pantano P, Baron JC, Lebrun-Grandie P et al (1984) Regional cerebral blood flow and oxygen consumption in human aging. Stroke 15(4):635–641

    Article  CAS  PubMed  Google Scholar 

  • Pappata S, Fiorelli M, Rommel T et al (1993) PET study of changes in local brain hemodynamics and oxygen metabolism after unilateral middle cerebral artery occlusion in baboons. J Cereb Blood Flow Metab 13(3):416–424

    Article  CAS  PubMed  Google Scholar 

  • Petersen ET, Zimine I, Ho YL et al (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79(944):688–701

    Article  CAS  PubMed  Google Scholar 

  • Peterson EC, Wang Z, Britz G (2011) Regulation of cerebral blood flow. Int J Vasc Med 2011:1–8

    Article  Google Scholar 

  • Pindzola RR, Yonas H (1998) The xenon-enhanced computed tomography cerebral blood flow method. Neurosurgery 43(6):1488–1492

    CAS  PubMed  Google Scholar 

  • Powell J, O’Neil JP (2006) Production of 15Owater at low-energy proton cyclotrons. Appl Radiat Isot 64(7):755–759

    Article  CAS  PubMed  Google Scholar 

  • Ragland JD, Gur RC, Raz J, et al (2001) Effect of schizophrenia on frontotemporal activity during word encoding and recognition: a PET cerebral blood flow study. Am J Psychiatry 158(7):1114–1125

    Google Scholar 

  • Raichle ME, Martin WR, Herscovitch P et al (1983) Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 24(9):790–798

    CAS  PubMed  Google Scholar 

  • Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39(5):904–911

    CAS  PubMed  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11(1–2):85–158

    CAS  PubMed  Google Scholar 

  • Sajjad M, Liow JS, Moreno-Cantu J (2000) A system for continuous production and infusion of 15OH2O for PET activation studies. Appl Radiat Isot 52(2):205–210

    Article  CAS  PubMed  Google Scholar 

  • Sakoh M, Rohl L, Gyldensted C et al (2000a) Cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking after acute stroke in pigs: comparison with [15O]H2O positron emission tomography. Stroke 31(8):1958–1964

    Article  CAS  PubMed  Google Scholar 

  • Sakoh M, Ostergaard L, Røhl L et al (2000b) Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs. J Neurosurg 93(4):647–657

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Kasuga T, Nakanishi F et al (1987) Cerebral blood flow study by 133Xe inhalation and single photon emission CT in occlusive cerebrovascular diseases. Kaku Igaku 24(1):47–54

    CAS  PubMed  Google Scholar 

  • Skyhøj Olsen T, Larsen B, Bech Skriver E et al (1981) Focal cerebral ischemia measured by the intra-arterial 133xenon method. Limitations of 2-dimensional blood flow measurements. Stroke 12(6):736–744

    Article  PubMed  Google Scholar 

  • Slosman DO, Chicherio C, Ludwig C et al (2001) (133)Xe SPECT cerebral blood flow study in a healthy population: determination of T-scores. J Nucl Med 42(6):864–870

    CAS  PubMed  Google Scholar 

  • Sokoloff L, Perlin S, Kornetsky C et al (1957) The effects of D-lysergic acid diethylamide on cerebral circulation and overall metabolism. Ann N Y Acad Sci 66(3):468–477

    Article  CAS  PubMed  Google Scholar 

  • Szabo CA, Narayana S, Kochunov PV et al (2007) PET imaging in the photosensitive baboon: case-controlled study. Epilepsia 48(2):245–253

    Article  PubMed  Google Scholar 

  • Tomura N, Kato T, Kanno I et al (1993) Increased blood flow in human brain tumor after administration of angiotensin II: demonstration by PET. Comput Med Imaging Graph 17(6):443–449

    Article  CAS  PubMed  Google Scholar 

  • Terpolilli NA, Kim S, Thal SC et al (2012) Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles. Circ Res 110(5):727–738

    Article  CAS  PubMed  Google Scholar 

  • van Naemen J, Monclus M, Damhaut P et al (1996) Production, automatic delivery and bolus injection of 15Owater for positron emission tomography studies. Nucl Med Biol 23(4):413–416

    Article  PubMed  Google Scholar 

  • van Osch MJ, Vonken EJ, Bakker CJ et al (2001) Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 45(3):477–485

    Article  PubMed  Google Scholar 

  • Veall N, Mallett BL (1967) The Xe133 inhalation technique for regional cerebral blood flow studies. Strahlentherapie Sonderb 65:166–173

    CAS  PubMed  Google Scholar 

  • Villringer A, Dirnagl U (1995) Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 7(3):240–276

    CAS  PubMed  Google Scholar 

  • Wakita K, Imahori Y, Ido T et al (2000) Simplification for measuring input function of FDG PET: investigation of 1-point blood sampling method. J Nucl Med 41(9):1484–1490

    CAS  PubMed  Google Scholar 

  • Watabe H, Itoh M, Cunningham V et al (1996) Noninvasive quantification of rCBF using positron emission tomography. J Cereb Blood Flow Metab 16:311–319

    Article  CAS  PubMed  Google Scholar 

  • Wintermark M, Sesay M, Barbier E et al (2005) Comparative overview of brain perfusion imaging techniques. J Neuroradiol 32(5):294–314

    Article  CAS  PubMed  Google Scholar 

  • Worsley KJ, Evans AC, Marrett S et al (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12(6):900–918

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Sadoshima S, Kuwabara Y et al (1990) Cerebral blood flow and oxygen metabolism in patients with vascular dementia of the Binswanger type. Stroke 21(12):1694–1699

    Article  CAS  PubMed  Google Scholar 

  • Zanotti-Fregonara P, Chen K, Liow J et al (2011) Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab 31(10):1986–1998

    Article  PubMed  Google Scholar 

  • Zaro-Weber O, Moeller-Hartmann W, Heiss W et al (2010a) Maps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography. Stroke 41(12):2817–2821

    Article  PubMed  Google Scholar 

  • Zaro-Weber O, Moeller-Hartmann W, Heiss W et al (2010b) MRI perfusion maps in acute stroke validated with 15O-water positron emission tomography. Stroke 41(3):443–449

    Article  PubMed  Google Scholar 

  • Zaro-Weber O, Moeller-Hartmann W, Heiss W et al (2012) Influence of the arterial input function on absolute and relative perfusion-weighted imaging penumbral flow detection: a validation with 15O-water positron emission tomography. Stroke 43(2):378–385

    Article  PubMed  Google Scholar 

  • Zierler K (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10:393–407

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the cyclotron, radiochemistry, and PET crews of the Department of Nuclear Medicine of the Leipzig University Hospital for their excellent support in acquiring the PET data. Further, we would like to thank the stroke sheep model group of the Leipzig Fraunhofer Institute for Cell Therapy and Immunology for providing the research animals, and to our collaborators at the Department of Neuroradiology of the Leipzig University Hospital for providing the sheep MRI data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilia Zeisig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeisig, V., Patt, M., Becker, G., Boltze, J., Sabri, O., Barthel, H. (2014). Cerebral Blood Flow Measurement with Oxygen-15 Water Positron Emission Tomography. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Luiten, P. (eds) PET and SPECT of Neurobiological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42014-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42014-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42013-9

  • Online ISBN: 978-3-642-42014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation