Sparse Deformable Models with Application to Cardiac Motion Analysis

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

  • 4271 Accesses

Abstract

Deformable models have been widely used with success in medical image analysis. They combine bottom-up information derived from image appearance cues, with top-down shape-based constraints within a physics-based formulation. However, in many real world problems the observations extracted from the image data often contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we introduce a new family of deformable models that are inspired from compressed sensing, a technique for efficiently reconstructing a signal based on its sparseness in some domain. In this problem, we employ sparsity to represent the outliers or gross errors, and combine it seamlessly with deformable models. The proposed new formulation is applied to the analysis of cardiac motion, using tagged magnetic resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the poor image quality. Our new deformable models track the heart motion robustly, and the resulting strains are consistent with those calculated from manual labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amini, A., Chen, Y., Curwen, R., Mani, V., Sun, J.: Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI. IEEE Transactions on Medical Imaging 17(3), 344–356 (1998)

    Article  Google Scholar 

  2. van Assen, H.C., Danilouchkine, M.G., Frangi, A.F., Ords, S., Westenberg, J.J., Reiber, J.H., Lelieveldt, B.P.: SPASM: A 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Medical Image Analysis 10(2), 286–303 (2006)

    Article  Google Scholar 

  3. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, T., Wang, X., Chung, S., Metaxas, D., Axel, L.: Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models. IEEE Transactions on Medical Imaging 29(1), 1–11 (2010)

    Article  Google Scholar 

  5. Chuang, J.S., Zemljic-Harpf, A., Ross, R.S., Frank, L.R., McCulloch, A.D., Omens, J.H.: Determination of three-dimensional ventricular strain distributions in gene-targeted mice using tagged MRI. MRM 64(5), 1281–1288 (2010)

    Article  Google Scholar 

  6. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  7. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis. In: MMBIA, pp. 171–180 (1996)

    Google Scholar 

  8. Metaxas, D.N.: Physics-based deformable models: Applications to computer vision, graphics, and medical imaging, 1st edn. Kluwer Academic Publishers (1996)

    Google Scholar 

  9. Myronenko, A., Song, X.: Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  10. Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Computer Graphics Forum 25(4), 809–836 (2006)

    Article  Google Scholar 

  11. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. TPAMI 22(3), 266–280 (2000)

    Article  Google Scholar 

  12. Radeva, P., Amini, A.A., Huang, J.: Deformable B-solids and implicit snakes for 3D localization and tracking of SPAMM MRI data. Computer Vision and Image Understanding 66(2), 163–178 (1997)

    Article  Google Scholar 

  13. Shen, D., Davatzikos, C.: An adaptive-focus deformable model using statistical and geometric information. TPAMI 22(8), 906–913 (2000)

    Article  Google Scholar 

  14. Shen, T., Huang, X., Li, H., Kim, E., Zhang, S., Huang, J.: A 3D Laplacian-driven parametric deformable model. In: ICCV, pp. 279–286 (2011)

    Google Scholar 

  15. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: SPG, pp. 175–184. ACM (2004)

    Google Scholar 

  16. Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artificial Intelligence 36(1), 91–123 (1988)

    Article  MATH  Google Scholar 

  17. Tustison, N., Amini, A.: Biventricular myocardial strains via nonrigid registration of AnFigatomical NURBS models. IEEE Transactions on Medical Imaging 25(1), 94–112 (2006)

    Article  Google Scholar 

  18. Vogler, C., Goldenstein, S., Stolfi, J., Pavlovic, V., Metaxas, D.: Outlier rejection in high-dimensional deformable models. IVC 25(3), 274–284 (2007)

    Article  Google Scholar 

  19. Wang, H., Amini, A.A.: Cardiac motion and deformation recovery from MRI: A review. IEEE Transactions on Medical Imaging 31(2), 487–503 (2012)

    Article  Google Scholar 

  20. Wang, X., Chen, T., Zhang, S., Metaxas, D., Axel, L.: LV motion and strain computation from tMRI based on meshless deformable models. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 636–644. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Young, A.A., French, B.A., Yang, Z., Cowan, B.R., Gilson, W.D., Berr, S.S., Kramer, C.M., Epstein, F.H.: Reperfused myocardial infarction in mice: 3D map** of late gadolinium enhancement and strain. JCMR 8(5), 685–692 (2006)

    Google Scholar 

  22. Zhang, S., Wang, X., Metaxas, D., Chen, T., Axel, L.: Lv surface reconstruction from sparse tmri using laplacian surface deformation and optimization. In: ISBI 2009, pp. 698–701 (2009)

    Google Scholar 

  23. Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: Sparse shape composition. Medical Image Analysis 16(1), 265–277 (2012)

    Article  Google Scholar 

  24. Zhong, J., Liu, W., Yu, X.: Characterization of three-dimensional myocardial deformation in the mouse heart: An MR tagging study. JMRI 27(6), 1263–1270 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, Y., Zhang, S., Huang, J., Metaxas, D., Axel, L. (2013). Sparse Deformable Models with Application to Cardiac Motion Analysis. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation