Chitosan-g-Copolymers: Synthesis, Properties, and Applications

  • Chapter
  • First Online:
Polysaccharide Based Graft Copolymers

Abstract

Chitosan (Ch), which is the result of the alkaline hydrolysis of the naturally occurring chitin biopolymer, is considered to be one of the highly versatile polymeric materials due to its active functional groups (–NH2 and –OH groups), biocompatibility, biodegradability, and nontoxic property. Preparation, analysis, and general properties of Ch and its derivatives have been reported in this chapter. Moreover, chemical modification of Ch by direct reactions on its active functional groups and by grafting technique has been discussed in details. Characterization of Ch and its carboxymethyl derivative (CMCh) grafted by various functionalized polymers has been carried out using spectral and thermal analyses, X-ray diffraction, and scanning electron microscopy. Various fields of applications of Ch and CMCh as superabsorbent materials, metal ions adsorption, ion exchangers, as well as in pharmaceutical and biomedical areas have been also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678

    Article  CAS  Google Scholar 

  2. Khor E (2002) Chitin: a biomaterial in waiting. Curr Opin Solid State Mater Sci 6(4):313–317

    Article  CAS  Google Scholar 

  3. Van Luyen D, Dm H (1996) In: Salamone J (ed) Polymeric materials encyclopedia, vol 2. CRC, Boca Raton, FL, p 1208

    Google Scholar 

  4. Roja G, Floores JA, Rodriguez A, Ly M, Maldonado H (2005) Adsorption of chromium onto cross-linked chitosan. Sep Purif Technol 44:31–36

    Article  CAS  Google Scholar 

  5. Peniche C, Argüelles-Monal W, Peniche H, Acosta N (2003) Chitosan: an attractive biocompatible polymer for microencapsulation. Macromol Biosci 3(10):511–520

    Article  CAS  Google Scholar 

  6. Thanpitcha T, Sirivat A, Jamieson AM, Rujiravanit R (2006) Preparation and characterization of polyaniline/chitosan blend film. Carbohydr Polym 64(4):560–568

    Article  CAS  Google Scholar 

  7. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93

    Article  CAS  Google Scholar 

  8. Dutta PK, Tripathi S, Mehrotra CK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    Article  CAS  Google Scholar 

  9. Bautista-Bănos S, Hermàdez-Lauzardo AN, Velàzquez-del Valle HG, Hermàdez-López M, Ait Barka E, Bosquez-Holina B et al (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot 25:108–118

    Article  CAS  Google Scholar 

  10. Kato Y, Onishi H, Hachida Y (2003) Application of chitin and chitosan derivatives in the pharmaceutical field. Curr Pharm Biotechnol 4:303–309

    Article  CAS  Google Scholar 

  11. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  12. Ma G, Yang D, Kennedy JF, Nie J (2009) Synthesize and characterization of organic-soluble acylated chitosan. Carbohydr Polym 75(3):390–394

    Article  CAS  Google Scholar 

  13. Muzzarelli RAA, Rochetti R (1974) The determination of vanadium in sea water by hot graphite atomic absorption spectrometry on chitosan after separation from salt. Anal Chim Acta 70:283–289

    Article  CAS  Google Scholar 

  14. **a YQ, Cuo TY, Song MD, Zhang BH, Zhang BL (2006) Selective separation of quercetin by molecular imprinting using chitosan beads as functional matrix. React Funct Polym 66:1734–1740

    Article  CAS  Google Scholar 

  15. Sashiwa H, Aiba S (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908

    Article  CAS  Google Scholar 

  16. **e WM, Xu PX, Wang W, Liu Q (2002) Preparation and antimicrobial activity of a water-soluble chitosan derivative. Carbohydr Polym 50(1):35–40

    Article  CAS  Google Scholar 

  17. Qu X, Wirsen A, Albertsson A (1999) Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D, L-Lactic acid. J Appl Polym Sci 74:3193–3202

    Article  CAS  Google Scholar 

  18. Guibal E, Touraud E, Roussy J (2005) The use of silver-coated ceramic beads for sterilization of Sphingomonas sp. in drinking mineral water. World J Microbiol Biotechnol 21(6–7):913–920

    Article  CAS  Google Scholar 

  19. Li N, Bai R, Liu C (2005) Enhanced and selective adsorption of mercury ions on chitosan beads graftedwith polyarylamide via surface-initiated atom transfer radical polymerization. Langmuir 21(25):11780–11787

    Article  CAS  Google Scholar 

  20. **aohui W, Yumin Du, Fei H, Hui L, Lihong F (2005) Abstract of papers. In: 22nd 9th ACS national meeting, San Diego, CA, USA, 13–17 March

    Google Scholar 

  21. Ju-Young Y, Hee-lack C, Tae S II, Young-Moo K, Wha-Jung K, Doo-Kyung M (2005) J Ind Eng Chem 11(6):957–963

    Google Scholar 

  22. Lacroix M, Le Thien C (2005) Edible films and coatings from non-starch polysaccharides. In: Han JH (ed) Innovations in food packagings. Elsevier, Amsterdam, pp 338–361

    Chapter  Google Scholar 

  23. Broussignac P (1968) Chem Ind Geniechim 99:1242

    Google Scholar 

  24. Domard A, Rinaudo M (1983) Preparation and characterization of fully deacetylated chitosan. Int J Biol Macromol 5(1):49–52

    Article  CAS  Google Scholar 

  25. Moore GK (1978) Ph.D. Thesis (CNAA), Trent Polytechic, UK

    Google Scholar 

  26. Hirai A, Odani H, Nakajima A (1991) Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym Bull 26:87–94

    Article  CAS  Google Scholar 

  27. Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications opportunities galore. React Funct Polym 68:1013

    Article  CAS  Google Scholar 

  28. Wolfrom ML, Maher GG, Chaney A (1957) Chitosan nitrate. J Org Chem 23:1990

    Article  Google Scholar 

  29. Heras A, Rodrigues NM, Ramos VM, Agullo E (2001) N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydr Polym 44:1–8

    Article  CAS  Google Scholar 

  30. Ramos VM, Rodrygues NM, Dyaza MF, Rodrygues MS, Heras A, Agullo E (2003) N-methylene phosphonic chitosan. Effect of preparation methods on its properties. Carbohydr Polym 52:39–46

    Article  CAS  Google Scholar 

  31. Matevosyan GL, Yukha YS, Zavlin PM (2003) Phosphorylation of chitosan. Russ J Gen Chem 73:1725–1728

    Article  CAS  Google Scholar 

  32. Ramos VM, Rodrygues NM, Rodrygues MS, Heras A, Agullo E (2003) Modified chitosan carrying phosphonic and alkyl groups. Carbohydr Polym 51:425–429

    Article  CAS  Google Scholar 

  33. Karrer P, Loenig H, Usteri E (1943) Zur Kenntnis blutgerinnungshemmender polysaccharide-poly-schwefelsaüre-ester und ähnlicher verbindungen. Helv Chim Acta 26:1296

    Article  CAS  Google Scholar 

  34. Hackman RH (1954) Studies on Chitin I: enzymic degradation of chitin and chitin esters. Aust J Biol Sci 7:168–178

    CAS  Google Scholar 

  35. Coppick S, Hall WP (1947) In: Little RW (ed), Reinhold, New York, p 179

    Google Scholar 

  36. Katsuura K, Mizuno H (1966) Flame proofing of cotton fabrics with urea and phosphoric acid in organic solvent. Sen-1 Gakkishi 22(11):510–514

    Article  CAS  Google Scholar 

  37. Sakaguchi T, Horikoshi T, Nakajima A (1981) Adsorption of uranium by chitin phosphate and chitosan phosphate. Agric Biol Chem 45(10):2191–2195

    Article  CAS  Google Scholar 

  38. Laszkiewicz B (1985) Thermal properties of chitin ammonophosphates and their complexes with methanol. J Therm Anal Calorim 30(4):889–894

    Article  CAS  Google Scholar 

  39. Nagasawa K, Tohira Y, Inoue Y, Tanoura N (1971) Reaction between carbohydrates and sulfuric acid: part I. Depolymerization and sulfation of polysaccharides by sulfuric acid. Carbohydr Res 18:95–102

    Article  CAS  Google Scholar 

  40. Vikhoreva G, Bannikova G, Stolbushkina P, Panov A, Drozd N, Makarov V, Varlamov V, Galbraikh L (2005) Preparation and anticoagulant activity of a low-molecular-weight sulfated chitosan. Carbohydr Polym 62:327–332

    Article  CAS  Google Scholar 

  41. Gamzazade A, Sklyar A, Nasibov S, Sushkov I, Shashkov A, Knirel Y (1997) Structural features of sulfated chitosans. Carbohydr Polym 34(1):113–116

    Article  CAS  Google Scholar 

  42. Je JY, Park PJ, Kim SK (2005) Protyl endopeptidase inhibitory activity of chitosan sulfates with different degree of deacetylation. Carbohydr Polym 60(4):553–556

    Article  CAS  Google Scholar 

  43. Zhang C, ** Q, Zhang H, Shen J (2003) Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohydr Polym 54(2):137–141

    Article  CAS  Google Scholar 

  44. **ng R, Liu S, Yu H, Guo Z, Li Z, Li P (2005) Preparation of high-molecular weight and high-sulfate content chitosans and their potential antioxidant activity in vitro. Carbohydr Polym 61(2):148–154

    Article  CAS  Google Scholar 

  45. **ng R, Liu S, Yu H, Zhang Q, Li Z, Li P (2004) Preparation of low-molecular-weight and high-sulfate-content chitosans under microwave radiation and their potential antioxidant activity in vitro. Carbohydr Res 339(5):2515–2519

    Article  CAS  Google Scholar 

  46. Naggi AM, Torri G, Compagnoni T, Casu B (1986) In: Muzzarelli RAA, Jeuniaux C, Goody GW (eds) Chitin in nature and technology. Plenum, New York, NY, p 371

    Chapter  Google Scholar 

  47. Shigemasa Y, Usui H, Morimoto M, Saimoto H, Okamoto Y, Minami S, Sashiwa H (1999) Chemical modification of chitin and chitosan 1: preparation of partially deacetylated chitin derivatives via a ring-opening reaction with cyclic acid anhydride in lithium chloride/N, N-dimethyl acetamide. Carbohydr Polym 39(3):237–243

    Article  CAS  Google Scholar 

  48. Tien C, Lacroix M, Ispas-Szabo MMA (2003) N-Acetylated chitosan: hydrophobic matrices for controlled drug release. J Control Release 93:1–3

    Article  CAS  Google Scholar 

  49. Sashiwa H, Kawasaki N, Nakayama A, Muraki E, Yamamoto N, Zhu H, Nagano H, Omura Y, Saimot H, Shigemasa Y, Aiba S (2002) Chemical modification of chitosan.13. Synthesis of organosoluble, palladium adsorbable and biodegradable chitosan derivatives towards the chemical plating on plastics. Biomacromolecules 3:1120–1125

    Article  CAS  Google Scholar 

  50. Wu Y, Seo T, Maeda S, Sasaki T, Irie S, Sakurai K (2005) Circular dichroism induced by the helical conformations of acylated chitosan derivatives bearing cinnamate chromophores. J Polym Sci B Polym Phys 43:1354–1364

    Article  CAS  Google Scholar 

  51. Hoffmann-La-Roche F and CO (1957) UK Patent 777: 204

    Google Scholar 

  52. Aiba S (1986) Studies on chitosan: 1. Determination of the degree of N-acetylation of chitosan by ultraviolet spectrophotometry and gel permeation chromatography. Int J Biol Macromol 8(3):173–176

    Article  CAS  Google Scholar 

  53. Moore GK, Roberts GAF (1981) Reaction of chitosan: 2. Preparation and reactivity of N-acyl derivatives of chitosan. Int J Biol Macromol 3:292–296

    Article  CAS  Google Scholar 

  54. Kurita K, Sannan T, Iwakura Y (1977) Studies on chitin, 3. Preparation of pure chitin, poly(N-acetyl-D-glucoseamine) from the water soluble chitin. Die Makromol Chem 178:2595–2602

    Article  CAS  Google Scholar 

  55. Zhang C, ** Q, Zhang H, Shen J (2003) Synthesis and characterization of water soluble O-succinyl-chitosan. Eur Polym J 39:1629–1634

    Article  CAS  Google Scholar 

  56. Moore GK, Roberts GAF (1982) Reactions of chitosan: 4. Preparation of organosoluble derivatives of chitosan. Int J Biol Macromol 4:246–249

    Article  CAS  Google Scholar 

  57. Moore GK, Roberts GAF (1981) Reactions of chitosan: 3. Preparation and reactivity of Schiff’s base derivatives of chitosan. Int J Biol Macromol 3:337–341

    Article  CAS  Google Scholar 

  58. Gupta KC, Jabrail FH (2007) Glutaraldehyde cross-linked chitosan microspheres for controlled released of centchroman. Carbohydr Res 342(15):2244–2252

    Article  CAS  Google Scholar 

  59. Coelho TC, Laus RR, Mangrich AS, deFávere VT, Laranjeira CM (2007) Effect of heparin coating on epichlorohydrin cross-linked chitosan microspheres on the adsorption of copper (II) ions. React Funct Polym 67:468–475

    Article  CAS  Google Scholar 

  60. Yisong Y, Wenjun L, Tongyin Y (1990) Polym Commun 31:319–321

    Google Scholar 

  61. Jamella SR, Jayakrishnan A (1995) Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16(10):769–775

    Article  Google Scholar 

  62. Noguchi J (1963) (Asachi Chemical Industry Co., Ltd.) Japan 24, 400 (65), Oct 25, Appl. May 17, 3 pp

    Google Scholar 

  63. Lim S. “PhD thesis 2002” Faculty of North Carolina State University. “Synthesis of a fiber-reactive chitosan derivative and its application to fabricas an antimicrobial finish and a dyeing-improving agent.” (Under the direction of Sameul Mack Hudson).

    Google Scholar 

  64. Okimasu S (1958) Nippon Nogei Kagaku Kaishi 32:383

    Article  CAS  Google Scholar 

  65. Plisko EA, Nud’ga LA, Danilov SN (1972) USSR Patent 325: 234

    Google Scholar 

  66. Nud’ga LA, Plisko EA, Danilov SN (1963) Zhur Obsch Khim 43:2752

    Google Scholar 

  67. Ge H, Luo D (2005) Preparation of carboxymethyl chitosan in aqueous solution under microwave irradiation. Carbohydr Res 340(7):1351–1356

    Article  CAS  Google Scholar 

  68. Joshi JM, Sinha VK (2006) Graft copolymerization of 2-hydroxyethyl methacrylate onto carboxymethyl chitosan using CAN as an initiator. Polym J 47(6):2198–2204

    Article  CAS  Google Scholar 

  69. Wu YG, Chan WL, Szeto YUS (2003) Preparation of O-carboxymethyl chitosan and their effect on color yield of acid dyes on silk. J Appl Polym Sci 90(9):2500–2502

    Article  CAS  Google Scholar 

  70. Sugimoto M, Morimoto M, Sashiwa H (1998) Preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohydr Polym 36(1):49–59

    Article  CAS  Google Scholar 

  71. Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan—present status and applications. Carbohydr Polym 62:142–158

    Article  CAS  Google Scholar 

  72. Wang J, Chen Y, Zhang S, Yu H (2008) A chitosan-based floculant prepared with gamma-irradiation-induced grafting. Bioresour Technol 99:3397–3402

    Article  CAS  Google Scholar 

  73. Pengfei L, Maolin Z, Jilan W (2001) Study on radiation-induced grafting of styrene onto chitin and chitosan. Radiat Phys Chem 61(2):149–153

    Article  Google Scholar 

  74. Mino G, Kaizerman S (1958) A new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J Polym Sci 31(122):242–243

    Article  Google Scholar 

  75. Lagos A, Reyes J (1988) Grafting onto chitosan: 1. Graft copolymerization of methylmethacrylate onto chitosan with Fenton’s reagent (Fe2+–H2O2) as a redox initiator. Polym Sci A Polym Chem 26:985–991

    Article  CAS  Google Scholar 

  76. Kataoka S, Ando T (1981) Molecular weight regulation in radical polymerization of methacrylic acid by chitosan. Kobunshi Ronbunshu 38(11):797–799

    Article  CAS  Google Scholar 

  77. Athawale VD, Rathi SC (1999) Graft polymerization: starch as a model substrate. J Macromol Sci Rev Macromol Chem Phys C39(3):445–480

    Article  CAS  Google Scholar 

  78. Berlin Ad A, Kislenko VN (1992) Kinetics and mechanism of radical graft polymerization of monomers onto polysaccharides. Prog Polym Sci 17:765–825

    Article  Google Scholar 

  79. Pourjavada A, Mahdavinia GR, Zohuriaan-Mehr MJ (2003) Modified chitosan, II. H-ChitoPAN, a novel pH-responsive supersorbent hydrogel. J Appl Polym Sci 90:3115–3121

    Article  CAS  Google Scholar 

  80. Poujavadi A, Zohuriaan-Mehr MJ, Mahdavinia GR (2004) Modified chitosan. III. Superabsorbency, salt- and pH-sensitivity of smart ampholytic hydrogels from chitosan-g-PAN. Polym Adv Technol 15(4):173–180

    Article  CAS  Google Scholar 

  81. Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan. 4. Superabsorbent hydrogels from poly(acrylamide—co-acrylic acid) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399

    Article  CAS  Google Scholar 

  82. Jenkins DW, Hudson SM (2001) Review of vinyl graft copolymerization featuring recent advances towards controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem Rev 101(11):3245–3274

    Article  CAS  Google Scholar 

  83. Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ, Omidian H (2003) Modified chitosan. I. Optimized cerium ammonium nitrate-induced synthesis of chitosan-g-polyacrylonitrile. J Appl Polym Sci 88(8):2048–2054

    Article  CAS  Google Scholar 

  84. Yazdani-Pedram M, Lagos A, Retuert J, Guerrero R, Riquelme P (1995) On the modification of chitosan through grafting. J Macromol Sci Pure Appl Chem A32(5):1037–1047

    Article  CAS  Google Scholar 

  85. Kataoka S, Ando T (1984) Radical polymerization of acrylic acid in the presence of chitosan. Kobunshi Ronbunshu 41(9):519–524

    Article  CAS  Google Scholar 

  86. Wang Y, **gxinan Y, Kunyuan Q (1994) Studies of graft copolymerization onto chitosan. Acta Polymerica Sinica 2:188

    Google Scholar 

  87. Yazdani-Pedram M, Retuert J (1997) Homogeneous grafting reaction of vinyl pyrrolidone onto chitosan. J Appl Polym Sci 63(10):1321–1326

    Article  CAS  Google Scholar 

  88. Retuert J, Yazdani-Pedram M (1993) Cocatalyst effect in potassium persulfate initiated grafting onto chitosan. Polym Bull 31(5):559–562

    Article  CAS  Google Scholar 

  89. Akgün S, Ekici G, Mutlu N, Besirli N, Hazer B (2007) Synthesis and properties of chitosan—modified poly(vinyl butyrate). J Polym Res 14:215–221

    Article  CAS  Google Scholar 

  90. Yazdani-Pedran M, Lagos A, Retuert PJ (2002) Study of the effect of reaction variables on grafting of polyacrylamide onto chitosan. Polym Bull 48:93–98

    Article  Google Scholar 

  91. Mun GA, Nurkeeva ZS, Dergunov SA, Nam IK, Maimakov TP, Shaikhutdinov EM, Lee SC, Park K (2008) Studies on graft copolymerization of 2-hydroxyethyl acrylate onto chitosan. React Funct Polym 68:389–395

    Article  CAS  Google Scholar 

  92. Zohuriaan-Mehr MJ (2005) Advances in chitin and chitosan modification through graft copolymerization: a comprehensive review. Iran Polym J 14(3):235–265

    CAS  Google Scholar 

  93. Liu YH, Shang YJ, Li WP, Wang Z, Deng KL (2000) Study on the kinetics of acrylonitrile polymerization initiated by diperiodatonickelate (IV) periodate complex. Acta Polymerica Sinica 2:235–238

    Google Scholar 

  94. Liu YH, Li WP, Deng KL (2001) Graft copolymerization of methyl acrylate onto nylon1010 initiated by potassium diperiodatonickelate (IV). J Appl Polym Sci 82(11):2636–2640

    Article  CAS  Google Scholar 

  95. Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    Article  Google Scholar 

  96. Liu L, Wang YS, Shen XF, Fang YE (2005) Preparation of chitosan-g-polycaprolactone copolymers through ring-opening polymerization of ε-caprolactone onto phthaloyl-protected chitosan. Biopolymers 78(4):163–170

    Article  CAS  Google Scholar 

  97. Guan XP, Quan DP, Shuai XT, Liao KR, Mai KC (2007) Chitosan-graft poly(ε-caprolactone)s: an optimized chemical approach leading to a controllable structure and enhanced properties. J Polym Sci A Polym Chem 45(12):2556–2568

    Article  CAS  Google Scholar 

  98. Liu L, Chen LX, Fang YE (2006) Self-catalysis of phthaloylchitosan for graft copolymerization of e-caprolactone with chitosan. Macromol Rapid Commun 27(23):1988–1994

    Article  CAS  Google Scholar 

  99. Wu Y, Zheng YL, Yang WL, Wang CC, Hu JH, Fu SK (2005) Synthesis and characterization of a novel amphiphilic chitosan-polylactide graft copolymer. Carbohydr Polym 59(2):165–171

    Article  CAS  Google Scholar 

  100. Skotak M, Leonov AP, Larsen G, Noriega S, Subramanian A (2008) Biocompatible and biodegradable ultrafine fibrillar scaffold materials for tissue engineering by facile grafting of L-lactide onto chitosan. Biomacromolecules 9(7):1902–1908

    Article  CAS  Google Scholar 

  101. Feng H, Dong CM (2006) Preparation, characterization, and self-assembled properties of biodegradable chitosan-poly(L-lactide) hybrid amphiphiles. Biomacromolecules 7(11):3069–3075

    Article  CAS  Google Scholar 

  102. Fujioka M, Okada H, Kusaka Y, Nishiyama S, Noguchi H, Ishii S et al (2004) enzymatic synthesis of chitin- and chitosan-graft-aliphatic polyesters. Macromol Rapid Commun 25(20):1776–1780

    Article  CAS  Google Scholar 

  103. Kurita K, Ikeda H, Yoshida Y, Shimojoh M, Harata M (2002) Chemoselective protection of the amino groups of chitosan by controlled phthaloylation: facile preparation of a precursor useful for chemical modifications. Biomacromolecules 3(1):1–4

    Article  CAS  Google Scholar 

  104. Makuška R, Gorochovceva N (2006) Regioselective grafting of poly(ethylene glycol) onto chitosan through C-6 position of glucosamine units. Carbohydr Polym 64(2):319–327

    Article  CAS  Google Scholar 

  105. Cai G, Jiang H, Chen Z, Tu K, Wang L, Zhu K (2009) Synthesis, characterization and self assemble behavior of chitosan-O-poly(ε-caprolactone). Eur Polym J 45:1674–1680

    Article  CAS  Google Scholar 

  106. Cai GQ, Jiang HL, Tu KH, Wang LQ, Zhu KJ (2009) A facile route for regioselective conjugation of organo-soluble polymers onto chitosan. Macromol Biosci 9(3):256–261

    Article  CAS  Google Scholar 

  107. Li Z, Guo J, Zhang J, Zhao Y, Lv L, Ding C, Zhang X (2010) Chitosan-graft-polyethylenimine with improved properties as a potential gene vector. Carbohydr Polym 80(1):254–259

    Article  CAS  Google Scholar 

  108. Duan W, Chen C, Jiang L, Li GH (2008) Preparation and characterization of the graft copolymer of chitosan with poly[rosin-(2-acryloyloxy)ethyl ester]. Carbohydr Polym 73(4):582–586

    Article  CAS  Google Scholar 

  109. Mohamed RR, Sabaa MW (2010) Graft copolymerization of acrylonitrile and its amidoxime derivative onto chitosan. J Appl Polym Sci 116:413–421

    Article  CAS  Google Scholar 

  110. Sabaa MW, Mohamed NA, Ali R, Abd El Latif SM (2010) Chemically induced graft copolymerization of acrylonitrile onto carboxymethyl chitosan and its modification to amidoxime derivative. Polym Plast Technol Eng 49:1055–1064

    Article  CAS  Google Scholar 

  111. Huacai G, Wan P, Dengke L (2006) Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr Polym 66:372–378

    Article  CAS  Google Scholar 

  112. Liu G, Zhai Y, Wang X, Wang W, Pan Y, Dong X, Wang Y (2008) Preparation, characterization, and in vitro drug release behavior of biodegradable chitosan-graft-poly(1,4-dioxan-2-one) copolymer. Carbohydr Polym 74(4):862–867

    Article  CAS  Google Scholar 

  113. Detchprohm S, Aoi K, Okada M (2001) Synthesis of a novel chitin derivative having oligo(ε-caprolactone) side chains in aqueous reaction media. Macromol Chem Phys 202:3560–3570

    Article  CAS  Google Scholar 

  114. Zhong Z, Kimura Y, Takahashi M, Yamane H (2000) Characterization of chemical and solid state structures of acylated chitosans. Polymer 41:899–906

    Article  Google Scholar 

  115. Liu L, Xu X, Guo S, Han W (2009) Synthesis and self-assembly of chitosan-based copolymer with a pair of hydrophobic/hydrophilic grafts of polycaprolactone and poly(ethylene glycol). Carbohydr Polym 75:401–407

    Article  CAS  Google Scholar 

  116. Kang H, Cai Y, Liu P (2006) Synthesis, characterization and thermal sensitivity of chitosan-based graft copolymers. Carbohydr Res 341:2851–2857

    Article  CAS  Google Scholar 

  117. ElKhholy SS, Khalil KD, Elsabee MZ (2011) Grafting of acryloyl cyanoacetohydrazide onto chitosan. J Polym Res 18:459–467

    Article  CAS  Google Scholar 

  118. Mum GA, Nurkeeva ZS, Dergunov SA, Nam IK, Maimakov TP, Shaikhutdinov EM, Lee SC, Park K (2008) Studies on graft copolymerization of 2-hydroxyethyl acrylate onto chitosan. React Funct Polym 68:389–395

    Article  CAS  Google Scholar 

  119. Sabaa MW, Mohamed NA, Mohamed RR, Khalil NM, Abd El Latif MS (2010) Synthesis, characterization and antimicrobial activity of poly (N-vinylimidazole) grafted carboxymethyl chitosan. Carbohydr Polym 79:998–1005

    Article  CAS  Google Scholar 

  120. El-Sherbiny IM, Smyth HDC (2010) Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres. Int J Pharm 395:132–141

    Article  CAS  Google Scholar 

  121. Yu C, Yun-fei L, Hui-min T, Jian-xin J (2009) Synthesis and characterization of a novel superabsorbent polymer of N, O-carboxymethyl chitosan graft copolymerized with vinyl monomers. Carbohydr Polym 75:287–292

    Article  CAS  Google Scholar 

  122. Omidian H, Rocca JC, Park K (2005) Advances in superporous hydrogels. J Control Release 102:3–12

    Article  CAS  Google Scholar 

  123. Liu JH, Wang Q, Wang AQ (2007) Synthesis and characterization of chitosan-g-poly(acrylic acid)sodium humate superabsorbent. Carbohydr Polym 70:166–173

    Article  CAS  Google Scholar 

  124. Sun LP, Du YM, Shi XW, Chen X, Yang JH, Xu YM (2006) A new approach to chemically modified carboxymethyl chitosan and study of its moisture-absorption and moisture-retention abilities. J Appl Polym Sci 102:1303–1309

    Article  CAS  Google Scholar 

  125. Pang HT, Cheng XG, Park HJ, Cha DS, Kennedy JF (2007) Preparation and rheological properties of deoxycholate-chitosan and carboxymethyl chitosan in aqueous systems. Carbohydr Polym 69:419–425

    Article  CAS  Google Scholar 

  126. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1–3):219–243

    Article  CAS  Google Scholar 

  127. Guibal E (2004) Interaction of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74

    Article  CAS  Google Scholar 

  128. Chen XG, Park HJ (2003) Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr Polym 53(4):355–359

    Article  CAS  Google Scholar 

  129. Hon DNS, Tang LG (2000) Chelation of chitosan derivatives with zinc ions. I. O, N-carboxymethyl chitosan. J Appl Polym Sci 77(10):2246–2253

    Article  CAS  Google Scholar 

  130. Farag S, Kareem SSA (2009) Different natural biomasses for lead cation removal. Carbohydr Polym 78(2):263–267

    Article  CAS  Google Scholar 

  131. Sousa KS, Silva EC, Airoldi C (2009) Ethylenesulfide as a useful agent for incorporation into the biopolymer chitosan in a solvent-free reaction for use in cation removal. Carbohydr Res 344(13):1716–1723

    Article  CAS  Google Scholar 

  132. Emara AAA, Tawab MA, El-ghamry MA, Elsabee MZ (2011) Metal uptake by chitosan derivatives and structure studies of the polymer metal complex. Carbohydr Polym 83:192–202

    Article  CAS  Google Scholar 

  133. Jiang J, Hua D, Jiang J, Tang J, Zhu X (2010) Synthesis and property of poly(sodium 4-styrenesulfonate) grafted chitosan by nitroxide-mediated polymerization with chitosan-TEMPO macroinitiator. Carbohydr Polym 81:358–364

    Article  CAS  Google Scholar 

  134. Muzzarelli RAA (1973) Analytical application of chitin and chitosan. In: Belcher R, Freiser H (eds) Natural chelating polymers; alginic acid, chitin and chitosan. Pergamon Press, New York, NY, pp 177–227

    Google Scholar 

  135. Singh V, Tripathi DN, Tiwari A, Sanghi R (2006) Microwave synthesized chitosan-graft-poly(methylmethacrylate): an efficient Zn+ ion binder. Carbohydr Polym 65(1):35–41

    Article  CAS  Google Scholar 

  136. El-Sherbiny IM (2009) Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. Eur Polym J 45:199–210

    Article  CAS  Google Scholar 

  137. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Article  CAS  Google Scholar 

  138. Nguyen DN, Green JJ, Chan JM, Langer R, Anderson DC (2009) Polymeric materials for gene delivery and DNA vaccination. Adv Mater 21(16):847–867

    Article  CAS  Google Scholar 

  139. Hussain SM, Braydich-Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM et al (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21(16):1549–1559

    Article  CAS  Google Scholar 

  140. Mumper RJ, Wang J, Claspell JM, Rolland AP (1995) Novel polymeric condensing carriers for gene delivery. In: Proceedings of the international symposium on controlled release of bioactive materials, vol 22, p 178

    Google Scholar 

  141. Liu WG, Yao KD (2002) Chitosan and its derivatives—a promising non-viral vector for gene transfection. J Control Release 83(1):1–11

    Article  Google Scholar 

  142. Jiang HL, Kim YK, Arote R, Nah JW, Cho MH, Choi YJ et al (2007) Chitosan-graft-polyethylenimine as a gene carrier. J Control Release 117(2):273–280

    Article  CAS  Google Scholar 

  143. Lu B, Xu XD, Zhuo RX, Cheng SX, Zhuo RX (2008) Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery: properties and in vitro transfection studies. Biomacromolecules 9:2594

    Article  CAS  Google Scholar 

  144. Wong K, Sun G, Zhang X, Dai H, Liu Y, He C, Leong KW (2006) PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo. Bioconjug Chem 17(1):152–158

    Article  CAS  Google Scholar 

  145. Kunath K, Von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, Kissel T (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 89(1):113–125

    Article  CAS  Google Scholar 

  146. Neu M, Fischer D, Kissel T (2005) Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 79(8):992–1009

    Article  CAS  Google Scholar 

  147. Jeong JH, Kim SW, Park TG (2007) Molecular design of functional polymers for gene therapy. Prog Polym Sci 32(11):1239–1274

    Article  CAS  Google Scholar 

  148. Kircheis R, Wightman L, Wagner E (2001) Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 53(3):341–358

    Article  CAS  Google Scholar 

  149. El-Sherbiny IM, Smyth HDC (2012) Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Mol Pharm 9:269–280

    Article  CAS  Google Scholar 

  150. Zhong Z, **ng R, Liu S, Wang L, Cai S, Li P (2008) Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydr Res 343(3):566–570

    Article  CAS  Google Scholar 

  151. Wang X, Huang Y, Zhu J, Pan Y, He R, Wang Y (2009) Chitosan-graft poly(p-dioxanone) copolymers: preparation, characterization, and properties. Carbohydr Res 344(6):801–807

    Article  CAS  Google Scholar 

  152. He R, Wang X, Wang Y, Yang K, Zeng J, Ding S (2006) A study on grafting poly(1,4-dioxan-2-one) onto starch via 2,4-toluene diisocyanate. Carbohydr Polym 65(1):28–34

    Article  CAS  Google Scholar 

  153. El-Sherbiny IM, Smyth HDC (2010) Poly(ethylene glycol)–carboxymethyl chitosan-based pH-responsive hydrogels: photo-induced synthesis, characterization, swelling, and in vitro evaluation as potential drug carriers. Carbohydr Res 345(14):2004–2012

    Article  CAS  Google Scholar 

  154. Calvo P, Remunan-lopez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  CAS  Google Scholar 

  155. Giunchedi P, Genta B, Muzzarelli RAA, Conte U (1998) Preparation and characterization of ampicillin loaded methylpyrrolidinone and chitosan microspheres. Biomaterials 19:157–161

    Article  CAS  Google Scholar 

  156. Borchard G, Lueben HL, De Boer GA, Verhoef JC, Lehr CM, Junginger HE (1996) The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III. Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release 39(2–3):131–138

    Article  CAS  Google Scholar 

  157. Richardson SCW, Kolbe HVJ, Duncan R (1999) Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 178:231–243

    Article  CAS  Google Scholar 

  158. Janes KA, Calxo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97

    Article  CAS  Google Scholar 

  159. Thanou MM, Kotze´ AF, Scharringhausen T, Lueكen HL, De Boer AG, Verhoef JC et al (2000) Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release 64(1–2):15–25

    Article  CAS  Google Scholar 

  160. Xu YM, Du YM, Huang RH, Gao LP (2003) Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials 24:5015–5022

    Article  CAS  Google Scholar 

  161. Amiji MM (1997) Synthesis of anionic poly(ethylene glycol) derivative for chitosan surface modification in blood-contacting applications. Carbohydr Polym 32(3–4):193–199

    Article  CAS  Google Scholar 

  162. Choksakulnimitr S, Masuda S, Tokuda H, Takakura Y, Hashida M (1995) In vitro cytotoxicity of macromolecules in different cell culture systems. J Control Release 34(3):233–241

    Article  CAS  Google Scholar 

  163. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    Article  CAS  Google Scholar 

  164. Gerf R, Minamitake Y, Perracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  Google Scholar 

  165. Peracchia MT, Gref R, Minamitake Y, Domb A, Lotan N, Langer R (1997) PEG-coated nanoparticles from amphiphilic diblock and multiblock copolymer: investigate of their encapsulation and release characteristics. J Control Release 46(3):223–231

    Article  CAS  Google Scholar 

  166. Quellec P, Gref R, Perrin L, Dellacherie E, Sommer F, Verbavatz JM et al (1998) Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization. J Biomed Mater Res 42:45–54

    Article  CAS  Google Scholar 

  167. Hu Y, Jiang XQ, Ding Y, Zhang LY, Yang CZ, Zhang JF et al (2003) Preparation and drug release be hehaviors of nimodipine- loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles. Biomaterials 24:2395–2404

    Article  CAS  Google Scholar 

  168. Qin Y, **ng R, Liu S, Li K, Meng X, Li R, Cui J, Li B, Li P (2012) Novel thiosemicarbazone chitosan derivatives: preparation, characterization, and antifungal activity. Carbohydr Polym 87:2664–2670

    Article  CAS  Google Scholar 

  169. Mohamed RR, Seoudi RS, Sabaa MW (2012) Synthesis and characterization of antibacterial semi-interpenetrating carboxymethyl chitosan/poly(acrylonitrile) hydrogels. Cellulose 19(3):947–958

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy W. Sabaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sabaa, M.W. (2013). Chitosan-g-Copolymers: Synthesis, Properties, and Applications. In: Kalia, S., Sabaa, M. (eds) Polysaccharide Based Graft Copolymers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36566-9_4

Download citation

Publish with us

Policies and ethics

Navigation