The Family Thermoactinomycetaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The family Thermoactinomycetaceae is a member of the order Bacillales, Gram-positive bacteria that form endospores and mycelia, are non-acid-fast, and do not contain mycolic acids in their cell wall. At the time of writing, it encompasses 13 genera and only 20 species.

The genera are Thermoactinomyces, Laceyella, Seinonella, Thermoflavimicrobium, Planifilum, Mechercharimyces, Shimazuella, Desmospora, Kroppenstedtia, Marininema, Melghirimyces, Lihuaxuella, and Polycladomyces.

Strains of this family have been isolated from various environmental samples, such as soil, marine sediments, sugar cane, compost, sputa, and other sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Addou AN, Schumann P, Spröer C, Bouanane-Darenfed A, Amarouche-Yala S, Hacene H, Cayol JL, Fardeau ML (2013) Melghirimyces thermohalophilus sp. nov., a novel thermoactinomycete isolated from an Algerian salt lake. Int J Syst Evol Microbiol 63:1717–1722

    Article  PubMed  CAS  Google Scholar 

  • Addou AN, Schumann P, Spröer C, Hacene H, Cayol JL, Fardeau ML (2012) Melghirimyces algeriensis gen. nov., sp. nov., a member of the family Thermoactinomycetaceae, isolated from a salt lake. Int J Syst Evol Microbiol 62:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Al-Khudary R, Hashwa F, Mroueh M (2004) A novel olive oil degrading Thermoactinomyces species with a high extremely thermostable lipase activity. Eng Life Sci 4:78–82

    Article  CAS  Google Scholar 

  • Akparov VK, Grishin AM, Yusupova MP, Ivanova NM, Chestukhina GG (2007) Structural principles of the wide substrate specificity of Thermoactinomyces vulgaris carboxypeptidase T. Reconstruction of the carboxypeptidase B primary specificity pocket. Biochemistry (Mosc) 72:416–423

    Article  CAS  Google Scholar 

  • Amner W, McCarthy AJ, Edwards C (1988) Quantitative assessment of factors affecting the recovery of indigenous and released thermophilic bacteria from compost. Appl Environ Microbiol 54:3107–3112

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barker AP, Simmon KE, Cohen S, Slechta ES, Fisher MA, Schlaberg R (2012) Isolation and identification of Kroppenstedtia eburnea from multiple patient samples. J Clin Microbiol. doi:10.1128/JCM.01186-12

    PubMed  PubMed Central  Google Scholar 

  • Boiron P, Delga JM, Puel B, Drouhet E (1985) Étude sérologique de la bagassose par ELISA. Comparaison avec l’immuno-electro-diffusion. Bull Soc Fr Mycol Méd 14:309–314

    Google Scholar 

  • Carrillo L, Romano F, Alderete EC (1987) Determinacion de la inmunidad a Thermoactinomyces thalpophilus en Jujuy, Argentina. Acta Bioq Clin Lat Am 21:321–327

    Google Scholar 

  • Carrillo L, Maldonado MJ, Benitez Ahrendts MR (2009) Alkalithermophilic actinomycetes of subtropical area of Jujuy, Argentina. Rev Arg Microbiol 41:112–116

    CAS  Google Scholar 

  • Chang C-C, Ng C-C, Wang C-Y, Shyu T-T (2009) Activity of cellulase from Thermoactinomycetes and Bacillus spp. isolated from Brassica waste compost. Sci Agric (Piracicaba, Braz) 66:304–308

    CAS  Google Scholar 

  • Chen JJ, Lin LB, Zhang LL, Zhang J, Tang SK, Wei YL, Li WJ (2012) Laceyella sediminis sp. nov., a thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 62:38–42

    Article  PubMed  CAS  Google Scholar 

  • Cheng G, Zhao P, Tang X-F, Tang B (2009) Identification and characterization of a novel spore-associated subtilase from Thermoactinomyces sp. DCF. Microbiology 155:3661–3672

    Article  PubMed  CAS  Google Scholar 

  • Collins MD, Mackillop GC, Cross T (1982) Menaquinone composition of members of the genus Thermoactinomyces. FEMS Microbiol Lett 13:151–153

    Article  CAS  Google Scholar 

  • Cross T, Walker PD, Gould GW (1968) Thermophilic actinomycetes producing resistant endospores. Nature (London) 220:352–354

    Article  CAS  Google Scholar 

  • Cunnington D, Teichtahl H, Hunt JM, Dow C, Valentine R (2000) Necrotizing pulmonary granulomata in a marijuana smoker. Chest 117:1511–1515

    Article  PubMed  CAS  Google Scholar 

  • Dolashki A, Voelter W, Gushterova A, Van Beeumen J, Devreese B, Tchorbanov B (2012) Isolation and characterization of novel tyrosinase from Laceyella sacchari. Protein Pept Lett 19:538–543

    Article  PubMed  CAS  Google Scholar 

  • DSMZ (2012) List of recommended media for microorganisms. http://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-microorganisms.html

  • Elwan SH, Mostafa SA, Khodair AA, Ali O (1978) Lipase productivity of a lipolytic strain of Thermoactinomyces vulgaris. Zentralbl Bakteriol Naturwiss 133:706–712

    PubMed  CAS  Google Scholar 

  • Edwards JM (1972) The double dialysis method of producing farmer’s lung antigens. J Lab Clin Med 79:683–688

    PubMed  CAS  Google Scholar 

  • Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 73:3272–3282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hagerdal BGR, Ferchak JD, Pye EK (1978) Cellulolytic enzyme system of Thermoactinomyces sp. grown on microcrystalline cellulose. Appl Environ Microbiol 36:606–612

    PubMed  CAS  PubMed Central  Google Scholar 

  • Han SI, Lee JC, Lee HJ, Whang KS (2013) Planifilum composti sp. nov., a thermophile isolated from compost. Int J Syst Evol Microbiol 63:4557–4561

    Article  PubMed  CAS  Google Scholar 

  • Hanson RL, Goldberg SL, Brzozowski DB, Tully TP, Cazzulino D, Parker WL, Lyngberg OK, Vu TC, Wong MK, Patel RN (2007) Preparation of an amino acid intermediate for the dipeptidyl peptidase iv inhibitor, saxagliptin, using a modified phenylalanine dehydrogenase. Advan Syn Catal 349:1369–1378

    Article  CAS  Google Scholar 

  • Hatayama K, Shoun H, Ueda Y, Nakamura A (2005) Planifilum fimeticola gen. nov., sp. nov. and Planifilum fulgidum sp. nov., novel members of the family ‘Thermoactinomycetaceae’ isolated from compost. Int J Syst Evol Microbiol 55:2101–2104

    Article  PubMed  CAS  Google Scholar 

  • Hayashida S, Nanri N, Teramoto Y, Nishimoto T, Ohta K, Miyaguchi M (1988) Identification and characteristics of actinomycetes useful for semicontinuous treatment of domestic animal feces. Appl Environ Microbiol 54:2058–2063

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hedlund BP, Cole JK, Williams AJ, Hou W, Zhou E, Li W, Dong H (2012) A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China. Geoscience Frontiers 3:273–288

    Article  Google Scholar 

  • Huuskonen MS, Husman K, Jarvisalo J, Korhonen O, Kotimaa M, Kuusela T, Nordman H, Zitting A, Mantyjarvi R (1984) Extrinsic allergic alveolitis in the tobacco industry. Br J Ind Med 41:77–83

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ichikawa K, Tonozuka T, Mizuno M, Tanabe Y, Kamitori S, Nishikawaa A, Sakano Y (2005) Crystallization and preliminary X-ray analysis of Thermoactinomyces vulgaris R-47 maltooligosaccharide-metabolizing enzyme homologous to glucoamylase. Acta Crystallographica F61:302–304

    Google Scholar 

  • Kalakoutskii LV, Agre N (1973) Endospores of Actinomycetes: dormancy and germination. In: Sykes G, Skinner FA (eds) Actinomycetales. Characteristics and practical importance. Academic Press, London, pp 179–195

    Google Scholar 

  • Kanoh K, Matsuo Y, Adachi K, Imagawa H, Nishizawa M, Shizuri Y (2005) Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J Antibiot 58:289–292

    Article  PubMed  CAS  Google Scholar 

  • Kitpreechavanich V (2011) Phylogenetic of PLA-degrading thermophilic bacteria and characterization of PLA- degrading enzyme. PS093. BISMiS 2011, 19–23 May 2011, Bei**g, China

    Google Scholar 

  • Kleine R (1982) Properties of thermitase, a thermostable serine protease from Thermoactinomyces vulgaris. Acta Biol Med Ger 41:89–102

    PubMed  CAS  Google Scholar 

  • Kretschmer S (1980) Transinfection in Thermoactinomyces vulgaris. Z Allg Mickrobiol 20:73–75

    Article  CAS  Google Scholar 

  • Kurtboke DI, Sivasithamparam K (1993) Taxonomic implications of the reactions of representative Bacillus strains to Thermoactinomyces-phage. Actinomycetes 4:1–7

    Google Scholar 

  • Kurup VP, Barboriak JJ, Fink JN, Lechevalier MP (1975) Thermoactinomyces candidus a new species of thermophilic actinomycetes. Int J Syst Bacteriol 25:150–154

    Article  Google Scholar 

  • Kurup VP, Barboriak JJ, Fink JN, Scribner G (1976) Immunologic cross-reactions among thermophilic actinomycetes associated with hypersensitivity pneumonitis. J Allergy Clin Immunol 57:417–421

    Article  PubMed  CAS  Google Scholar 

  • Kurup VP, Hollick GE, Pagan EF (1980) Thermoactinomyces intermedius, a new species of amylase negative thermophilic actinomycetes. Sci Ciencia 7:104–108

    Google Scholar 

  • Kurup VP, Resnick A, Kagen SL, Cohen SH, Fink JN (1983) Allergenic fungi and actinomycetes in smoking materials and their health implications. Mycopathologia 82:61–64

    Article  PubMed  CAS  Google Scholar 

  • Lacey J (1971) Thermoactinomyces sacchari sp. nov., a thermophilic actinomycete causing bagassosis. J Gen Microbiol 66:327–338

    Article  PubMed  CAS  Google Scholar 

  • Lacey J (1974) Moulding of sugar-cane bagasse and its prevention. Ann Appl Biol 76:61–76

    Article  Google Scholar 

  • Lacey J (1997) Actinomycetes in composts. Ann Agric Environ Med 4:113–121

    Google Scholar 

  • Lacey J, Cross T (1989) Genus Thermoactinomyces Tsiklinsky 1899. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2574–2585

    Google Scholar 

  • Li J, Qin S, You ZQ, Long LJ, Tian XP, Wang FZ, Zhang S (2013) Melghirimyces profundicolus sp. nov., isolated from a deep sea sediment. Int J Syst Evol Microbiol 63:4552–4556

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhang G-T, Yang J, Tian X-P, Wang F-Z, Zhang CS, Zhang S, Li W-J (2012) Marininema mesophilum gen. nov., sp. nov., a thermoactinomycete isolated from deep sea sediment, and emended description of the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 62:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Matsuo J, Katsuta A, Matsuda S, Shizuri Y, Yokota A, Kasai H (2006) Mechercharimyces mesophilus gen. nov., sp. nov. and Mechercharimyces asporophorigenens sp. nov., antitumour substance-producing marine bacteria, and description of Thermoactinomycetaceae fam. nov. Int J Syst Evol Microbiol 56:2837–2842

    Article  PubMed  CAS  Google Scholar 

  • Matsuo Y, Kanoh K, Yamori T, Kasai H, Katsuta A, Adachi K, Shin-Ya K, Shizuri Y (2007) Urukthapelstatin A, a novel cytotoxic substance from marine-derived Mechercharimyces asporophorigenens YM11-542. I. Fermentation, isolation and biological activities. J Antibiotics 60:251–255

    Article  CAS  Google Scholar 

  • McCarthy AJ, Cross T (1984) A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130:5–25

    Google Scholar 

  • McNeil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7:357–417

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neef A, Schäfer R, Beimfohr C, Kämpfer P (2003) Fluorescence based rRNA sensor systems for detection of whole cells of Saccharomonospora spp. and Thermoactinomyces spp. Biosens Bioelectron 18:565–569

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Renberg I (1990) Viable endospores of Thermoactinomyces vulgaris in lake sediments as indicators of agricultural history. Appl Environ Microbiol 56:2025–2028

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ohshima T, Takada H, Yoshimura T, EsakiI N, Soda K (1991) Distribution, purification, and characterization of thermostable phenylalanine dehydrogenase from thermophilic Actinomycetes. J Bacteriol 173:3943–3948

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ohshima T, Nishida N, Bakthavatsalam S, Kataoka K, Takada H, Yoshimura T, Esaki N, Soda K (1994) The purification, characterization, cloning and sequencing of the gene for a halostable and thermostable leucine dehydrogenase from Thermoactinomyces intermedius. Eur J Biochem 222:305–312

    Article  PubMed  CAS  Google Scholar 

  • Panosyan HH (2010) Phylogenetic diversity based on 16S rRNA gene sequence analysis of aerobic thermophilic endospore-forming bacteria isolated from geothermal springs in Armenia. Biolog J Armenia 4:73–90

    Google Scholar 

  • Park Y-H, Kim E, Yim D-G, Kho Y-H, Mheen T-I, Goodfellow M (1993) Supragenic classification of Thermoactinomyces vulgaris by nucleotide sequencing of 5S ribosomal RNA. Zentbl Bakteriol 278:469–478

    Article  CAS  Google Scholar 

  • Park DJ, Dastager SG, Lee JC, Yeo SH, Yoon JH, Kim CJ (2007) Shimazuella kribbensis gen. nov., sp. nov., a mesophilic representative of the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 57:2660–2664

    Article  PubMed  CAS  Google Scholar 

  • Pauwels R, Devos M, Callens L, van der Straeten M (1978) Respiratory hazards from proteolytic enzymes. Lancet 1:669

    Article  PubMed  CAS  Google Scholar 

  • Rosselló-Mora R, Yarza P, Muñoz R (2012) The PK4 tree editing team. pk4@imedea.uib-csic.es

    Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Singh V, Chandra Pandey V, Pathak DC, Agrawal S (2012) Purification and characterization of Laceyella sacchari strain B42 xylanase and its potential for pulp biobleaching. Afr J Microbiol Res 6:1397–1410

    CAS  Google Scholar 

  • Smith K, Sundaram TK, Kernick M (1984) Malate dehydrogenases from Actinomycetes: structural comparison of Thermoactinomyces enzyme with other Actinomycete and Bacillus Enzymes. J Bacteriol 157:684–687

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stackebrandt E, Woese CR (1981) Towards a phylogeny of the actinomycetes and related organisms. Curr Microbiol 5:197–202

    Article  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Swan JRM, Blainey D, Crook B (2007) The HSE Grain Dust Study workers’ exposure to grain dust contaminants, immunological and clinical response. RR540. Health and Safety Laboratory. Buxton, Derbyshire

    Google Scholar 

  • Teplyakov AV, Kuranova IP, Harutyunyan EH, Vainshtein BK, Frommel C, Hohne WE, Wilson KS (1990) Crystal structure of thermitase at 1.4 Ã… resolution. J Mol Biol 214:261–279

    Article  PubMed  CAS  Google Scholar 

  • Tonozuka T, Yokota T, Ichikawa K, Mizuno M, Kondo S, Nishikawa A, Kamitori S, Sakano Y (2002) Crystal structures and substrate specificities of two α-amylases hydrolyzing cyclodextrins and pullulan from Thermoactinomyces vulgaris R-47. Biologia Bratislava 57(Suppl 11):71–76

    CAS  Google Scholar 

  • Treuhaft MW (1977) Isolation of bacteriophage from Thermoactinomyces. J Clin Microbiol 6:420–424

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsilinsky P (1899) Sur les mucedinéés thermophiles. Ann Inst Pasteur 13:500–505

    Google Scholar 

  • Tsubouchi T, Shimane Y, Mori K, Usui K, Hiraki T, Tame A, Uematsu K, Maruyama T, Hatada Y (2013) Polycladomyces abyssicola gen. nov., sp. nov., a thermophilic filamentous bacterium isolated from hemipelagic sediment in Japan. Int J Syst Evol Microbiol 63:1972–1981

    Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  • Turner P, Nilsson C, Svensson D, Holst O, Gorton L, Nordberg Karlsson E (2005) Monomeric and dimeric cyclomaltodextrinases reveal different modes of substrate degradation. Biologia, Bratislava, 60. Suppl 16:79–87

    Google Scholar 

  • Uzel A, HameÅŸ KocabaÅŸ EE, Bedir E (2011) Prevalence of Thermoactinomyces thalpophilus and T. sacchari strains with biotechnological potential at hot springs and soils from West Anatolia in Turkey. Turk J Biol 35:195–202

    CAS  Google Scholar 

  • von Jan M, Riegger N, Pötter G, Schumann P, Verbarg S, Spröer C, Rohde M, Lauer B, Labeda DP, Klenk H-P (2011) Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006 emend. Yassin et al. 2009. Int J Syst Evol Microbiol 61:2304–2310, International Journal of Systematic and Evolutionary Microbiologyijs.sgmjournals.org

    Article  Google Scholar 

  • Williams ST, Cross T (1971) Actinomycetes. In: Booth C (ed) Methods in microbiology, vol 4. Academic, London, pp 295–334

    Google Scholar 

  • Williams ST, Lanning S, Wellington EMH (1984) Ecology of actinomycetes. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of Actinomycetes. Academic, London, pp 481–528

    Google Scholar 

  • Xu J, Rao JR, Millar BC, Elborn JS, Evans J, Barr JG, Moore JE (2002) Improved molecular identification of Thermoactinomyces spp. associated with mushroom worker’s lung by 16S rDNA sequence ty**. J Med Microbiol 51:1117–1127

    PubMed  CAS  Google Scholar 

  • Yang G, Qin D, Wu C, Yuan Y, Zhou S, Cai Y (2013) Kroppenstedtia guangzhouensis sp. nov., a thermoactinomycete isolated from soil. Int J Syst Evol Microbiol 63:4077–4080

    Article  PubMed  CAS  Google Scholar 

  • Yao S, Liu Y, Zhang M, Zhang X, Li H, Zhao T, **n C, Xu L, Zhang B, Cheng C (2014) Thermoactinomyces daqus sp. nov., a thermophilic bacterium isolated from high-temperature Daqu. Int J Syst Evol Microbiol 64:206–210

    Article  PubMed  CAS  Google Scholar 

  • Yassin AF, Hupfer H, Klenk H-P, Siering C (2009) Desmospora activa gen. nov., sp. nov., a thermoactinomycete isolated from sputum of a patient with suspected pulmonary tuberculosis, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006. Int J Syst Evol Microbiol 59:454–459

    Article  PubMed  CAS  Google Scholar 

  • Yoon JH, Park YH (2000) Phylogenetic analysis of the genus Thermoactinomyces based on 16S rDNA sequences. Int J Syst Evol Microbiol 50:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Yoon JH, Shin YK, Park TH (2000) DNA–DNA relatedness among Thermoactinomyces species: Thermoactinomyces candidus as a synonym of Thermoactinomyces vulgaris and Thermoactinomyces thalpophilus as a synonym of Thermoactinomyces sacchari. Int J Syst Evol Microbiol 50:1905–1908

    PubMed  CAS  Google Scholar 

  • Yoon JH, Kim IG, Shin YK, Park YH (2005) Proposal of the genus Thermoactinomyces sensu stricto and three new genera, Laceyella, Thermoflavimicrobium and Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 55:395–400

    Article  PubMed  CAS  Google Scholar 

  • Yu TT, Zhang BH, Yao JC, Tang SK, Zhou EM, Yin YR, Wei DQ, Ming H, Li WJ (2012) Lihuaxuella thermophila gen. nov., sp. nov., isolated from a geothermal soil sample in Tengchong, Yunnan, south-west China. Antonie Van Leeuwenhoek (doi: 10.1007/s10482-012-9771-6)

    Google Scholar 

  • Zhang XM, He J, Zhang DF, Chen W, Jiang Z, Sahu MK, Sivakumar K, Li WJ (2013) Marininema halotolerans sp. nov., a novel thermoactinomycete isolated from a sediment sample, and emended description of the genus Marininema Liet al. 2012. Int J Syst Evol Microbiol 63:4562–4567

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y-X, Dong C, Biao S (2007) Planifilum yunnanense sp. nov., a thermophilic thermoactinomycete isolated from a hot spring. Int J Syst Evol Microbiol 57:1851–1854

    Article  PubMed  Google Scholar 

  • Zhang J, Tang S-K, Zhang Y-Q, Yu L-Y, Klenk H-P, Li W-J (2010) Laceyella tengchongensis sp. nov., a thermophile isolated from soil of a volcano. Int J Syst Evol Microbiol 60:2226–2230

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Carrillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Carrillo, L., Benítez-Ahrendts, M.R. (2014). The Family Thermoactinomycetaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_355

Download citation

Publish with us

Policies and ethics

Navigation