Overview of Oxidative Stress and Cardiovascular Disease

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

An imbalance between the production of free radicals and availability of appropriate antioxidant species is termed as oxidative stress. We review some of the evidence implicating an important role for oxidative stress in the pathophysiology of cardiovascular disease. A major contributor to oxidative stress is a family of reactive oxygen species (ROS) that are unstable molecules and contain one or more unpaired electrons in atomic or molecular orbitals that readily react with other molecules. Not only can ROS contribute to oxidative stress in general, but individual species of ROS have their own distinct properties and may activate diverse signaling pathways. Activation of these signaling pathways leads to distinct pathological changes associated with cardiovascular disease cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 1,999.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 2,674.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah Y, Gkatzoflia A, Gligorievski D et al (2006) Insulin protects cardiomyocytes against reoxygenation-induced hypercontracture by a survival pathway targeting SR Ca2+ storage. Cardiovasc Res 70:346–53

    CAS  PubMed  Google Scholar 

  • Aderka D, Engelmann H, Maor Y, Brakebusch C, Wallach D (1992) Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exper Med 175:323–9

    CAS  Google Scholar 

  • Aicher WK, Sakamoto KM, Hack A, Eibel H (1999) Analysis of functional elements in the human Egr-1 gene promoter. Rheumatol Int 18:207–14

    CAS  PubMed  Google Scholar 

  • Aikawa R, Nitta-Komatsubara Y, Kudoh S et al (2002) Reactive oxygen species induce cardiomyocyte apoptosis partly through TNF-alpha. Cytokine 18:179–83

    CAS  PubMed  Google Scholar 

  • Alexander RW (1995) Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 25:155–61

    CAS  PubMed  Google Scholar 

  • Allport VC, Slater DM, Newton R, Bennett PR (2000) NF-kappaB and AP-1 are required for cyclo-oxygenase 2 gene expression in amnion epithelial cell line (WISH). Mol Hum Reprod 6:561–5

    CAS  PubMed  Google Scholar 

  • Amstad PA, Krupitza G, Cerutti PA (1992) Mechanism of c-fos induction by active oxygen. Cancer Res 52:3952–60

    CAS  PubMed  Google Scholar 

  • Andrew PJ, Mayer B (1999) Enzymatic function of nitric oxide synthases. Cardiovascular Res 43:521–31

    CAS  Google Scholar 

  • Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–57

    CAS  PubMed  Google Scholar 

  • Antman EM, Anbe DT, Armstrong PW et al (2004) ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction–executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). Circulation 110:588–636

    PubMed  Google Scholar 

  • Antoniades C, Tousoulis D, Marinou K et al (2006) Effects of lipid profile on forearm hyperemic response in young subjects. Hellenic J Cardiol 47:152–7

    PubMed  Google Scholar 

  • Antoniades C, Tousoulis D, Stefanadis C (2007) Effects of endothelial nitric oxide synthase gene polymorphisms on oxidative stress, inflammatory status, and coronary atherosclerosis: an example of a transient phenotype. JACC 49:1226

    CAS  PubMed  Google Scholar 

  • Antoniades C, Shirodaria C, Leeson P et al (2009) Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis. Eur Heart J 30:1142–50

    CAS  PubMed  Google Scholar 

  • Apstein CS, Opie LH (2005) A challenge to the metabolic approach to myocardial ischaemia. Eur Heart J 26:956–9

    PubMed  Google Scholar 

  • Aukrust P, Yndestad A, Ueland T, Damas JK, Froland SS, Gullestad L (2006) The role of intravenous immunoglobulin in the treatment of chronic heart failure. Int J Cardiol 112:40–5

    PubMed  Google Scholar 

  • Aviram M, Rosenblat M, Etzioni A, Levy R (1996) Activation of NADPH oxidase required for macrophage-mediated oxidation of low-density lipoprotein. Metabolism 45:1069–79

    CAS  PubMed  Google Scholar 

  • Ballinger SW, Patterson C, Knight-Lozano CA et al (2002) Mitochondrial integrity and function in atherogenesis. Circulation 106:544–9

    CAS  PubMed  Google Scholar 

  • Bar FW, Tzivoni D, Dirksen MT et al (2006) Results of the first clinical study of adjunctive CAldaret (MCC-135) in patients undergoing primary percutaneous coronary intervention for ST-Elevation Myocardial Infarction: the randomized multicentre CASTEMI study. Eur Heart J 27:2516–23

    PubMed  Google Scholar 

  • Barlic J, Zhang Y, Murphy PM (2007) Atherogenic lipids induce adhesion of human coronary artery smooth muscle cells to macrophages by up-regulating chemokine CX3CL1 on smooth muscle cells in a TNFalpha-NFkappaB-dependent manner. J Biol Chem 282:19167–76

    CAS  PubMed  Google Scholar 

  • Bar-Shai M, Reznick AZ (2006) Reactive nitrogen species induce nuclear factor-kappaB-mediated protein degradation in skeletal muscle cells. Free Radic Biol Med 40:2112–25

    CAS  PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–37

    CAS  PubMed  Google Scholar 

  • Beckman JA, Liao JK, Hurley S et al (2004) Atorvastatin restores endothelial function in normocholesterolemic smokers independent of changes in low-density lipoprotein. Circ Res 95:217–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beisvag V, Lehre PK, Midelfart H, Aass H, Geiran O, Sandvik AK, Laegreid A, Komorowski J, Ellingsen O (2006) Aetiology-specific patterns in end-stage heart failure patients identified by functional annotation and classification of microarray data. Eur J Heart Fail 8:381–9

    CAS  PubMed  Google Scholar 

  • Bell RM, Yellon DM (2003) Atorvastatin, administered at the onset of reperfusion, and independent of lipid lowering, protects the myocardium by up-regulating a pro-survival pathway. JACC 41:508–15

    CAS  PubMed  Google Scholar 

  • Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci 14:4015–34

    Google Scholar 

  • Bhamra GS, Hausenloy DJ, Davidson SM et al (2008) Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol 103:274–84

    CAS  PubMed  Google Scholar 

  • Bhindi R, Witting PK, McMahon AC, Khachigian LM, Lowe HC (2006a) Rat models of myocardial infarction. Pathogenetic insights and clinical relevance. Thromb Haemost 96:602–10

    CAS  PubMed  Google Scholar 

  • Bhindi R, Khachigian LM, Lowe HC (2006b) DNAzymes targeting the transcription factor Egr-1 reduce myocardial infarct size following ischemia-reperfusion in rats. J Thromb Haemost 4:1479–83

    CAS  PubMed  Google Scholar 

  • Bhunia AK, Han H, Snowden A, Chatterjee S (1997) Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J Biol Chemistry 272:15642–9

    CAS  Google Scholar 

  • Blaschke F, Bruemmer D, Law RE (2004) Egr-1 is a major vascular pathogenic transcription factor in atherosclerosis and restenosis. Rev Endocr Metab Disord 5:249–54

    CAS  PubMed  Google Scholar 

  • Boaz M, Smetana S, Weinstein T et al (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356:1213–8

    CAS  PubMed  Google Scholar 

  • Boden WE, van Gilst WH, Scheldewaert RG et al (2000) Diltiazem in acute myocardial infarction treated with thrombolytic agents: a randomised placebo-controlled trial. Incomplete Infarction Trial of European Research Collaborators Evaluating Prognosis post-Thrombolysis (INTERCEPT). Lancet 355:1751–6

    CAS  PubMed  Google Scholar 

  • Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120:172–85

    CAS  PubMed  Google Scholar 

  • Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–34

    CAS  PubMed  Google Scholar 

  • Bonomini F, Tengattini S, Fabiano A, Bianchi R, Rezzani R (2008) Atherosclerosis and oxidative stress. Histol Histopathol 23:381–90

    CAS  PubMed  Google Scholar 

  • Boo YC, Jo H (2003) Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol 285:C499–508

    CAS  PubMed  Google Scholar 

  • Borges F, Fernandes E, Roleira F (2002) Progress towards the discovery of xanthine oxidase inhibitors. Curr Med Chem 9:195–217

    CAS  PubMed  Google Scholar 

  • Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM (2005) Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54:146–51

    CAS  PubMed  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowie AG, Moynagh PN, O'Neill LA (1997) Lipid peroxidation is involved in the activation of NF-kappaB by tumor necrosis factor but not interleukin-1 in the human endothelial cell line ECV304. Lack of involvement of H2O2 in NF-kappaB activation by either cytokine in both primary and transformed endothelial cells. J Biol Chem 272:25941–50

    CAS  PubMed  Google Scholar 

  • Bozkurt B, Torre-Amione G, Warren MS et al (2001) Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 103:1044–7

    CAS  PubMed  Google Scholar 

  • Bradham WS, Moe G, Wendt KA et al (2002) TNF-alpha and myocardial matrix metalloproteinases in heart failure: relationship to LV remodeling. Am J Physiol Heart Circ Physiol 282:H1288–95

    CAS  PubMed  Google Scholar 

  • Brand K, Page S, Rogler G et al (1996) Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest 97:1715–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brand K, Page S, Walli AK, Neumeier D, Baeuerle PA (1997a) Role of nuclear factor-kappa B in atherogenesis. Exp Physiol 82:297–304

    CAS  PubMed  Google Scholar 

  • Brand K, Eisele T, Kreusel U et al (1997b) Dysregulation of monocytic nuclear factor-kappa B by oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol 17:1901–9

    CAS  PubMed  Google Scholar 

  • Brennan P, O'Neill LA (1995) Effects of oxidants and antioxidants on nuclear factor kappa B activation in three different cell lines: evidence against a universal hypothesis involving oxygen radicals. Biochim Biophys Acta 1260:167–75

    PubMed  Google Scholar 

  • Brown BG, Zhao XQ, Chait A et al (2001) Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. NEJM 345:1583–92

    CAS  PubMed  Google Scholar 

  • Bullard AJ, Govewalla P, Yellon DM (2005) Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 100:397–403

    CAS  PubMed  Google Scholar 

  • Burgmaier M, Heinrich C, Marx N (2013) Cardiovascular effects of GLP-1 and GLP-1-based therapies: implications for the cardiovascular continuum in diabetes? Diabet Med 30:289–99

    CAS  PubMed  Google Scholar 

  • Buscher M, Rahmsdorf HJ, Litfin M, Karin M, Herrlich P (1988) Activation of the c-fos gene by UV and phorbol ester: different signal transduction pathways converge to the same enhancer element. Oncogene 3:301–11

    CAS  PubMed  Google Scholar 

  • Byrne JA, Grieve DJ, Bendall JK et al (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circulation Res 93:802–805

    Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–30

    CAS  PubMed  Google Scholar 

  • Cadenas E, Boveris A, Ragan CI, Stoppani AO (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180:248–57

    CAS  PubMed  Google Scholar 

  • Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–21

    CAS  PubMed  Google Scholar 

  • Carry MM, Mrak RE, Murphy ML, Peng CF, Straub KD, Fody EP (1989) Reperfusion injury in ischemic myocardium: protective effects of ruthenium red and of nitroprusside. Am J Cardiovasc Pathol 2:335–44

    CAS  PubMed  Google Scholar 

  • Castro MM, Rizzi E, Rascado RR, Nagassaki S, Bendhack LM, Tanus-Santos JE (2004) Atorvastatin enhances sildenafil-induced vasodilation through nitric oxide-mediated mechanisms. Eur J Pharmacol 498:189–94

    CAS  PubMed  Google Scholar 

  • Celermajer DS, Sorensen KE, Georgakopoulos D et al (1993) Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation 88:2149–55

    CAS  PubMed  Google Scholar 

  • Cesselli D, Jakoniuk I, Barlucchi L et al (2001) Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 89:279–86

    CAS  PubMed  Google Scholar 

  • Chandrasekar B, Colston JT, de la Rosa SD, Rao PP, Freeman GL (2003) TNF-alpha and H2O2 induce IL-18 and IL-18R beta expression in cardiomyocytes via NF-kappa B activation. BBRC 303:1152–8

    CAS  PubMed  Google Scholar 

  • Charlat MI, O'Neill PG, Egan JM et al (1987) Evidence for a pathogenetic role of xanthine oxidase in the "stunned" myocardium. Am J Physiol 252:H566–77

    CAS  PubMed  Google Scholar 

  • Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM (1998) Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 83:952–9

    CAS  PubMed  Google Scholar 

  • Chen D, Assad-Kottner C, Orrego C, Torre-Amione G (2008) Cytokines and acute heart failure. Crit Care Med 36:S9–16

    CAS  PubMed  Google Scholar 

  • Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107:3133–40

    CAS  PubMed  Google Scholar 

  • Cohn JN, Tam SW, Anand IS, Taylor AL, Sabolinski ML, Worcel M (2007) Isosorbide dinitrate and hydralazine in a fixed-dose combination produces further regression of left ventricular remodeling in a well-treated black population with heart failure: results from A-HeFT. J Card Fail 13:331–9

    CAS  PubMed  Google Scholar 

  • Corson MA, James NL, Latta SE, Nerem RM, Berk BC, Harrison DG (1996) Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circulation Res 79:984–91

    CAS  PubMed  Google Scholar 

  • Dahlof B, Devereux RB, Kjeldsen SE et al (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359:995–1003

    CAS  PubMed  Google Scholar 

  • Damas JK, Gullestad L, Aass H et al (2001) Enhanced gene expression of chemokines and their corresponding receptors in mononuclear blood cells in chronic heart failure–modulatory effect of intravenous immunoglobulin. JACC 38:187–93

    CAS  PubMed  Google Scholar 

  • Date MO, Morita T, Yamashita N et al (2002) The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. JACC 39:907–12

    CAS  PubMed  Google Scholar 

  • Davidson SM, Hausenloy D, Duchen MR, Yellon DM (2006) Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. Int J Biochem Cell Biol 38:414–9

    CAS  PubMed  Google Scholar 

  • Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    CAS  PubMed  Google Scholar 

  • Deacon CF, Mannucci E (2012) Ahrén B Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes-a review and meta analysis. Diabetes Obes Metab 14:762–7

    CAS  PubMed  Google Scholar 

  • Decoursey TE, Ligeti E (2005) Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 62:2173–93

    CAS  PubMed  Google Scholar 

  • Deswal A, Bozkurt B, Seta Y et al (1999) Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 99:3224–6

    CAS  PubMed  Google Scholar 

  • Dhalla AK, Hill MF, Singal PK (1996) Role of oxidative stress in transition of hypertrophy to heart failure. JACC 28:506–14

    CAS  PubMed  Google Scholar 

  • Dhalla NS, Takeda N, Rodriguez-Leyva D, Elimban V (2013) Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail Rev 2013 (Epub ahead of print)

    Google Scholar 

  • Dhingra S, Sharma AK, Singla DK, Singal PK (2007) p38 and ERK1/2 MAPKs mediate the interplay of TNF-alpha and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293:3524–31

    Google Scholar 

  • Di Lisa F, Kaludercic N, Carpi A, Menabo R, Giorgio M (2009) Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase. Basic Res Cardiol 104:131–9

    PubMed  Google Scholar 

  • Doctor A, Platt R, Sheram ML et al (2005) Hemoglobin conformation couples erythrocyte S-nitrosothiol content to O2 gradients. Proc Natl Acad Sci USA 102:5709–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  • Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108:1341–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dv F (1999) Endothelial cell responses to hypoxic stress. Clin Exp Pharm Physiol 26:10

    Google Scholar 

  • Dzau VJ (2001) Theodore Cooper Lecture: Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 37:1047–52

    CAS  PubMed  Google Scholar 

  • Eiken HG, Oie E, Damas JK et al (2001) Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. Eur J Clin Invest 31:389–97

    CAS  PubMed  Google Scholar 

  • Elahi MM, Matata BM (2006a) Free radicals in blood: evolving concepts in the mechanism of ischemic heart disease. Arch Biochem Biophys 450:78–88

    CAS  PubMed  Google Scholar 

  • Elahi MM, Matata BM (2006b) Myocardial protection against ischemia-reperfusion injury: novel approaches in maintaining homeostatic stability in blood. Recent Pat Cardiovasc Drug Discov 1:291–305

    CAS  PubMed  Google Scholar 

  • Elahi MM, Matata BM (2008) Functional adaptation to oxidative stress by memory T cells: an analysis of the role in the cardiovascular disease process. BBRC 376:445–7

    CAS  PubMed  Google Scholar 

  • Elahi MM, Khan JS, Matata BM (2006) Deleterious effects of cardiopulmonary bypass in coronary artery surgery and scientific interpretation of off-pump's logic. Acute Card Care 8:196–209

    PubMed  Google Scholar 

  • Elahi M, Asopa S, Matata B (2007a) NO-cGMP and TNF-alpha counter regulatory system in blood: understanding the mechanisms leading to myocardial dysfunction and failure. Biochim Biophys Acta 1772:5–14

    CAS  PubMed  Google Scholar 

  • Elahi MM, Naseem KM, Matata BM (2007b) Nitric oxide in blood. The nitrosative-oxidative disequilibrium hypothesis on the pathogenesis of cardiovascular disease. FEBS J 274:906–23

    CAS  PubMed  Google Scholar 

  • Elahi MM, Flatman S, Matata BM (2008) Tracing the origins of postoperative atrial fibrillation: the concept of oxidative stress-mediated myocardial injury phenomenon. Eur J Cardiovasc Prev Rehabil 15:735–41

    PubMed  Google Scholar 

  • Elahi MM, Kong YX, Matata BM (2009a) Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev 2:259–69

    PubMed Central  PubMed  Google Scholar 

  • Elahi MM, Worner M, Khan JS, Matata BM (2009b) Inspired nitric oxide and modulation of oxidative stress during cardiac surgery. Curr Drug Saf 4:188–98

    CAS  PubMed  Google Scholar 

  • Elkind MS (2006) Inflammation, atherosclerosis, and stroke. Neurologist 12:140–8

    PubMed  Google Scholar 

  • Ferreira SM, Lerner SF, Brunzini R, Evelson PA, Llesuy SF (2004) Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol 137:62–9

    CAS  PubMed  Google Scholar 

  • Fichtlscherer S, Rossig L, Breuer S, Vasa M, Dimmeler S, Zeiher AM (2001) Tumor necrosis factor antagonism with etanercept improves systemic endothelial vasoreactivity in patients with advanced heart failure. Circulation 104:3023–5

    CAS  PubMed  Google Scholar 

  • Flaherty JT, Pitt B, Gruber JW et al (1994) Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation 89:1982–91

    CAS  PubMed  Google Scholar 

  • Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Compar Physiol 284:R1–12

    CAS  Google Scholar 

  • Foster MW, McMahon TJ, Stamler JS (2003) S-nitrosylation in health and disease. Trends Mol Med 9:160–8

    CAS  PubMed  Google Scholar 

  • Freeman BA, White CR, Gutierrez H, Paler-Martinez A, Tarpey MM, Rubbo H (1995) Oxygen radical-nitric oxide reactions in vascular diseases. Adv Pharmacol 34:45–69

    CAS  PubMed  Google Scholar 

  • Fukui T, Ishizaka N, Rajagopalan S et al (1997) p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 80:45–51

    CAS  PubMed  Google Scholar 

  • Gao WD, Liu Y, Marban E (1996) Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. Circulation 94:2597–604

    CAS  PubMed  Google Scholar 

  • Genova ML, Pich MM, Biondi A et al (2003) Mitochondrial production of oxygen radical species and the role of Coenzyme Q as an antioxidant. Exp Biol Med (Maywood) 228:506–13

    CAS  Google Scholar 

  • Ghafourifar P, Asbury ML, Joshi SS, Kincaid ED (2005) Determination of mitochondrial nitric oxide synthase activity. Methods Enzymol 396:424–44

    CAS  PubMed  Google Scholar 

  • Ghiadoni L, Magagna A, Versari D et al (2003) Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 41:1281–6

    CAS  PubMed  Google Scholar 

  • Giulivi C, Boveris A, Cadenas E (1995) Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Arch Biochem Biophys 316:909–16

    CAS  PubMed  Google Scholar 

  • Gomez del Arco P, Martinez-Martinez S, Calvo V, Armesilla AL, Redondo JM (1997) Antioxidants and AP-1 activation: a brief overview. Immunobiology 198:273–278

    CAS  PubMed  Google Scholar 

  • Goodman GE, Thornquist MD, Balmes J et al (2004) The Beta-Carotene and Retinol Efficacy Trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stop** beta-carotene and retinol supplements. J Natl Cancer Inst 96:1743–50

    CAS  PubMed  Google Scholar 

  • Gorren AC, Bec N, Schrammel A, Werner ER, Lange R, Mayer B (2000) Low-temperature optical absorption spectra suggest a redox role for tetrahydrobiopterin in both steps of nitric oxide synthase catalysis. Biochemistry 39:11763–70

    CAS  PubMed  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    CAS  PubMed  Google Scholar 

  • Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(Pt 1):93–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grobe AC, Wells SM, Benavidez E et al (2006) Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am J Physiol Lung Cell Mole Physiol 290:L1069–77

    CAS  Google Scholar 

  • Grote K, Flach I, Luchtefeld M et al (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circulation Res 92:e80–6

    CAS  PubMed  Google Scholar 

  • Guggilam A, Haque M, Kerut EK et al (2007) TNF-alpha blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. Am J Physiol Heart Circ Physiol 293:H599–609

    CAS  PubMed  Google Scholar 

  • Gumina RJ, Buerger E, Eickmeier C, Moore J, Daemmgen J, Gross GJ (1999) Inhibition of the Na(+)/H(+) exchanger confers greater cardioprotection against 90 minutes of myocardial ischemia than ischemic preconditioning in dogs. Circulation 100:2519–26

    CAS  PubMed  Google Scholar 

  • Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann New York Acad Sci 899:136–47

    CAS  Google Scholar 

  • Guzik TJ, West NE, Black E et al (2000) Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res 86:E85–90

    CAS  PubMed  Google Scholar 

  • Hakala T, Hedman A (2003) Predicting the risk of atrial fibrillation after coronary artery bypass surgery. Scand Cardiovasc J 37:309–15

    PubMed  Google Scholar 

  • Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–15

    CAS  PubMed  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61:372–85

    CAS  PubMed  Google Scholar 

  • Hao F, Tan M, Xu X, Cui MZ (2008) Histamine induces Egr-1 expression in human aortic endothelial cells via the H1 receptor-mediated protein kinase Cdelta-dependent ERK activation pathway. J Biol Chem 283:26928–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hare JM (2003) Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol 35:719–29

    CAS  PubMed  Google Scholar 

  • Hare JM, Mangal B, Brown J et al (2008) Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. JACC 51:2301–9

    CAS  PubMed  Google Scholar 

  • Harja E, Bucciarelli LG, Lu Y et al (2004) Early growth response-1 promotes atherogenesis: mice deficient in early growth response-1 and apolipoprotein E display decreased atherosclerosis and vascular inflammation. Circ Res 94:333–9

    CAS  PubMed  Google Scholar 

  • Harrison DG, Widder J, Grumbach I, Chen W, Weber M, Searles C (2006) Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med 259:351–63

    CAS  PubMed  Google Scholar 

  • Hasan RN, Schafer AI (2008) Hemin upregulates Egr-1 expression in vascular smooth muscle cells via reactive oxygen species ERK-1/2-Elk-1 and NF-kappaB. Circulation Res 102:42–50

    CAS  PubMed  Google Scholar 

  • Hauptmann N, Grimsby J, Shih JC, Cadenas E (1996) The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch Biochem Biophys 335:295–304

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–60

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55:534–43

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 60:617–25

    CAS  PubMed  Google Scholar 

  • Hayashi T, Ueno Y, Okamoto T (1993) Oxidoreductive regulation of nuclear factor kappa B. Involvement of a cellular reducing catalyst thioredoxin. J Biol Chem 268:11380–8

    CAS  PubMed  Google Scholar 

  • Hayashidani S, Tsutsui H, Ikeuchi M et al (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285:H1229–35

    CAS  PubMed  Google Scholar 

  • Hayward R, Campbell B, Shin YK, Scalia R, Lefer AM (1999) Recombinant soluble P-selectin glycoprotein ligand-1 protects against myocardial ischemic reperfusion injury in cats. Cardiovasc Res 41:65–76

    CAS  PubMed  Google Scholar 

  • Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:23–33

    Google Scholar 

  • Heitzer T, Just H, Munzel T (1996) Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 94:6–9

    CAS  PubMed  Google Scholar 

  • Hennekens CH, Buring JE, Manson JE et al (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. NEJM 334:1145–9

    CAS  PubMed  Google Scholar 

  • Heymans S, Lupu F, Terclavers S et al (2005) Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 166:15–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heymans S, Hirsch E, Anker SD et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11:119–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heymes C, Bendall JK, Ratajczak P et al (2003) Increased myocardial NADPH oxidase activity in human heart failure. JACC 41:2164–71

    CAS  PubMed  Google Scholar 

  • Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K (2002) Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 346:1954–62

    CAS  PubMed  Google Scholar 

  • Higashi Y, Noma K, Yoshizumi M, Kihara Y (2009) Endothelial function and oxidative stress in cardiovascular diseases. Circulation J 73:411–8

    CAS  Google Scholar 

  • Higuchi Y, Otsu K, Nishida K et al (2002) Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34:233–40

    CAS  PubMed  Google Scholar 

  • Hill MF, Singal PK (1996) Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148:291–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirotani S, Otsu K, Nishida K et al (2002) Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105:509–15

    CAS  PubMed  Google Scholar 

  • Holland JA, O'Donnell RW, Chang MM, Johnson DK, Ziegler LM (2000) Endothelial cell oxidant production: effect of NADPH oxidase inhibitors. Endothelium 7:109–19

    CAS  PubMed  Google Scholar 

  • Huang WC, Chen JJ, Inoue H, Chen CC (2003) Tyrosine phosphorylation of I-kappa B kinase alpha/beta by protein kinase C-dependent c-Src activation is involved in TNF-alpha-induced cyclooxygenase-2 expression. J Immunol 170:4767–75

    CAS  PubMed  Google Scholar 

  • Hunt SA, Abraham WT, Chin MH et al (2009a) 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. JACC 53:e1–e90

    PubMed  Google Scholar 

  • Hunt SA, Abraham WT, Chin MH et al (2009b) 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119:e391–479

    PubMed  Google Scholar 

  • Ide T, Tsutsui H, Kinugawa S et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–63

    CAS  PubMed  Google Scholar 

  • Ide T, Tsutsui H, Hayashidani S et al (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–35

    CAS  PubMed  Google Scholar 

  • Ishii H, Ichimiya S, Kanashiro M et al (2005) Impact of a single intravenous administration of nicorandil before reperfusion in patients with ST-segment-elevation myocardial infarction. Circulation 112:1284–8

    CAS  PubMed  Google Scholar 

  • Jang S, Imlay JA (2007) Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem 282:929–37

    CAS  PubMed  Google Scholar 

  • Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeay S, Pianetti S, Kagan HM, Sonenshein GE (2003) Lysyl oxidase inhibits ras-mediated transformation by preventing activation of NF-kappa B. Mol Cell Biol 23:2251–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–6

    CAS  PubMed  Google Scholar 

  • ** N, Hatton ND, Harrington MA, **a X, Larsen SH, Rhoades RA (2000) H(2)O(2)-induced egr-1, fra-1, and c-jun gene expression is mediated by tyrosine kinase in aortic smooth muscle cells. Free Radic Biol Med 29:736–46

    CAS  PubMed  Google Scholar 

  • ** ZQ, Karliner JS, Vessey DA (2008) Ischaemic postconditioning protects isolated mouse hearts against ischaemia/reperfusion injury via sphingosine kinase isoform-1 activation. Cardiovasc Res 79:134–40

    CAS  PubMed  Google Scholar 

  • John S, Schneider MP, Delles C, Jacobi J, Schmieder RE (2005) Lipid-independent effects of statins on endothelial function and bioavailability of nitric oxide in hypercholesterolemic patients. Am Heart J 149:473

    PubMed  Google Scholar 

  • Jonassen AK, Sack MN, Mjos OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89:1191–8

    CAS  PubMed  Google Scholar 

  • Jones N, Agani FH (2003) Hyperoxia induces Egr-1 expression through activation of extracellular signal-regulated kinase 1/2 pathway. J Cell Physiol 196:326–33

    CAS  PubMed  Google Scholar 

  • Jones SP, Bolli R (2006) The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 40:16–23

    CAS  PubMed  Google Scholar 

  • Jung O, Marklund SL, Geiger H, Pedrazzini T, Busse R, Brandes RP (2003) Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circulation Res 93:622–9

    CAS  PubMed  Google Scholar 

  • Kawano S, Kubota T, Monden Y et al (2006) Blockade of NF-kappaB improves cardiac function and survival after myocardial infarction. Am J Physio Heart Circ Physio 291:H1337–44

    CAS  Google Scholar 

  • Keith ME, Jeejeebhoy KN, Langer A et al (2001) A controlled clinical trial of vitamin E supplementation in patients with congestive heart failure. Am J Clin Nutr 73:219–24

    CAS  PubMed  Google Scholar 

  • Kennedy SG, Kandel ES, Cross TK, Hay N (1999) Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Molec Cell Biol 19:5800–10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khaper N, Singal PK (1997) Effects of afterload-reducing drugs on pathogenesis of antioxidant changes and congestive heart failure in rats. JACC 29:856–61

    CAS  PubMed  Google Scholar 

  • Khaper N, Kaur K, Li T, Farahmand F, Singal PK (2003) Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Mol Cell Biochem 251:9–15

    CAS  PubMed  Google Scholar 

  • Khaper N, Bryan S, Dhingra S et al (2010) Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Signal 13:1033–49

    CAS  PubMed  Google Scholar 

  • Kim JS, ** Y, Lemasters JJ (2006) Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physio Heart Circ Physiol 290:H2024–34

    CAS  Google Scholar 

  • Kim JS, Park DW, Lee HK, Kim JR, Baek SH (2009) Early growth response-1 is involved in foam cell formation and is upregulated by the TLR9-MyD88-ERK1/2 pathway. Biochem Biophys Res Commun 390:196–200

    CAS  PubMed  Google Scholar 

  • Kim HK, Kang SW, Jeong SH, Kim N, Ko JH, Bang H, Park WS, Choi TH, Ha YR, Lee YS, Youm JB, Ko KS, Rhee BD, Han J (2012) Identification of potential target genes of cardioprotection against ischemia-reperfusion injury by express sequence tags analysis in rat hearts. J Cardiol 60:98–110

    PubMed  Google Scholar 

  • Klein HH, Pich S, Lindert S, Nebendahl K, Warneke G, Kreuzer H (1989) Treatment of reperfusion injury with intracoronary calcium channel antagonists and reduced coronary free calcium concentration in regionally ischemic, reperfused porcine hearts. JACC 13:1395–401

    CAS  PubMed  Google Scholar 

  • Kloner RA, Forman MB, Gibbons RJ, Ross AM, Alexander RW, Stone GW (2006) Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur Heart J 27:2400–5

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Miura T, Ishida H et al (2008) Limitation of infarct size by erythropoietin is associated with translocation of Akt to the mitochondria after reperfusion. Clin Exp Pharmacol Physiol 35:812–9

    CAS  PubMed  Google Scholar 

  • Kovacic P, Somanathan R (2006) Mechanism of teratogenesis: electron transfer, reactive oxygen species, and antioxidants. Birth Defects Res C Embryo Today 78:308–25

    CAS  PubMed  Google Scholar 

  • Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–42

    CAS  PubMed  Google Scholar 

  • Krum H (2002) Tumor necrosis factor-alpha blockade as a therapeutic strategy in heart failure (RENEWAL and ATTACH): unsuccessful, to be specific. J Card Fail 8:365–8

    PubMed  Google Scholar 

  • Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS (2003) H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. JMol Cell Cardiol 35:615–21

    CAS  Google Scholar 

  • Lacerda L, Somers S, Opie LH, Lecour S (2009) Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 84:201–8

    CAS  PubMed  Google Scholar 

  • Landmesser U, Cai H, Dikalov S et al (2002a) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–5

    CAS  PubMed  Google Scholar 

  • Landmesser U, Spiekermann S, Dikalov S et al (2002b) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106:3073–8

    CAS  PubMed  Google Scholar 

  • Landmesser U, Dikalov S, Price SR et al (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landry DB, Couper LL, Bryant SR, Lindner V (1997) Activation of the NF-kappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am J Pathol 151:1085–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laskey WK (2005) Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: a pilot study. Catheteriz Cardiovasc Interv 65:361–7

    Google Scholar 

  • Laskey WK, Yoon S, Calzada N, Ricciardi MJ (2008) Concordant improvements in coronary flow reserve and ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benefit of postconditioning. Catheter Cardiovasc Intervent Off J Soc Cardiac Angio Interv 72:212–20

    Google Scholar 

  • Laursen JB, Somers M, Kurz S et al (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103:1282–8

    CAS  PubMed  Google Scholar 

  • Lee VM, Quinn PA, Jennings SC, Ng LL (2003) Neutrophil activation and production of reactive oxygen species in pre-eclampsia. J Hypertens 21:395–402

    CAS  PubMed  Google Scholar 

  • Lefer DJ, Scalia R, Jones SP et al (2001a) HMG-CoA reductase inhibition protects the diabetic myocardium from ischemia-reperfusion injury. FASEB J 15:1454–6

    CAS  PubMed  Google Scholar 

  • Lefer AM, Scalia R, Lefer DJ (2001b) Vascular effects of HMG CoA-reductase inhibitors (statins) unrelated to cholesterol lowering: new concepts for cardiovascular disease. Cardiovasc Res 49:281–7

    CAS  PubMed  Google Scholar 

  • Lehoux S, Lemarie CA, Esposito B, Lijnen HR, Tedgui A (2004) Pressure-induced matrix metalloproteinase-9 contributes to early hypertensive remodeling. Circulation 109:1041–7

    CAS  PubMed  Google Scholar 

  • Lemarie CA, Paradis P, Schiffrin EL (2008) New insights on signaling cascades induced by cross-talk between angiotensin II and aldosterone. J Mol Med (Berl) 86:673–8

    CAS  Google Scholar 

  • Lemasters JJ, Bond JM, Chacon E et al (1996) The pH paradox in ischemia-reperfusion injury to cardiac myocytes. EXS 76:99–114

    CAS  PubMed  Google Scholar 

  • Leusen JH, Verhoeven AJ, Roos D (1996) Interactions between the components of the human NADPH oxidase: a review about the intrigues in the phox family. Front Biosci 1:72–90

    Google Scholar 

  • Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–84

    CAS  PubMed  Google Scholar 

  • Li JM, Wheatcroft S, Fan LM, Kearney MT, Shah AM (2004) Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2- production, vascular tone, and mitogen-activated protein kinase activation. Circulation 109:1307–13

    CAS  PubMed  Google Scholar 

  • Lin MI, Fulton D, Babbitt R et al (2003) Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of L-arginine metabolism to efficient nitric oxide production. J Biol Chem 278:44719–26

    CAS  PubMed  Google Scholar 

  • Lindholm LH, Ibsen H, Dahlof B et al (2002) Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359:1004–10

    CAS  PubMed  Google Scholar 

  • Lip GY, Edmunds E, Nuttall SL, Landray MJ, Blann AD, Beevers DG (2002) Oxidative stress in malignant and non-malignant phase hypertension. J Hum Hypertens 16:333–6

    CAS  PubMed  Google Scholar 

  • Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC (1989) Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 80:1816–27

    CAS  PubMed  Google Scholar 

  • Liu X, Chen H, Zhan B et al (2007) Attenuation of reperfusion injury by renal ischemic postconditioning: the role of NO. BBRC 359:628–34

    CAS  PubMed  Google Scholar 

  • Lonborg J, Kelbaek H, Vejlstrup N et al (2010) Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ Cardiovasc Interv 3:34–41

    PubMed  Google Scholar 

  • Lonn E, Yusuf S, Dzavik V et al (2001) Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation 103:919–25

    CAS  PubMed  Google Scholar 

  • Lonn E, Yusuf S, Hoogwerf B et al (2002) Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care 25:1919–27

    CAS  PubMed  Google Scholar 

  • Loor G, Schumacker PT (2008) Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ 15:686–90

    CAS  PubMed  Google Scholar 

  • Luchtefeld M, Grote K, Grothusen C et al (2005) Angiotensin II induces MMP-2 in a p47phox-dependent manner. BBRC 328:183–8

    CAS  PubMed  Google Scholar 

  • Lum H, Roebuck KA (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280:C719–41

    CAS  PubMed  Google Scholar 

  • Ma XL, Tsao PS, Lefer AM (1991) Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. J Clin Invest 88:1237–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma X, Zhang X, Li C, Luo M (2006) Effect of postconditioning on coronary blood flow velocity and endothelial function and LV recovery after myocardial infarction. J Interv Cardiol 19:367–75

    PubMed  Google Scholar 

  • Mach F, Schonbeck U, Libby P (1998) CD40 signaling in vascular cells: a key role in atherosclerosis? Atherosclerosis 137(Suppl):S89–95

    CAS  PubMed  Google Scholar 

  • Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    CAS  PubMed  Google Scholar 

  • Manea A, Manea SA, Gafencu AV, Raicu M, Simionescu M (2008) AP-1-dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit. Arteri Thromb Vascular Biol 28:878–85

    CAS  Google Scholar 

  • Mann DL (2002) Tumor necrosis factor-induced signal transduction and left ventricular remodeling. J Card Fail 8:S379–86

    CAS  PubMed  Google Scholar 

  • Mann DL (2003) Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 65:81–101

    CAS  PubMed  Google Scholar 

  • Mann DL, McMurray JJ, Packer M et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–602

    CAS  PubMed  Google Scholar 

  • Maruyama I, Shigeta K, Miyahara H et al (1997) Thrombin activates NF-kappa B through thrombin receptor and results in proliferation of vascular smooth muscle cells: role of thrombin in atherosclerosis and restenosis. Ann New York Acad Sci 811:429–36

    CAS  Google Scholar 

  • Marx N, Sukhova GK, Collins T, Libby P, Plutzky J (1999) PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99:3125–31

    CAS  PubMed  Google Scholar 

  • Masuya Y, Kameshita I, Fujisawa H et al (1999) MAP kinase-independent induction of proto-oncogene c-fos mRNA by hemin in human cells. BBRC 260:289–95

    CAS  PubMed  Google Scholar 

  • Matsusaka H, Ide T, Matsushima S et al (2006) Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 47:711–7

    CAS  PubMed  Google Scholar 

  • Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780:1325–36

    CAS  PubMed  Google Scholar 

  • Mattson D, Bradbury CM, Bisht KS, Curry HA, Spitz DR, Gius D (2004) Heat shock and the activation of AP-1 and inhibition of NF-kappa B DNA-binding activity: possible role of intracellular redox status. Int J Hyperthermia 20:224–33

    CAS  PubMed  Google Scholar 

  • Maytin M, Siwik DA, Ito M et al (2004) Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation 109:1168–71

    CAS  PubMed  Google Scholar 

  • McCaffrey TA, Fu C, Du B et al (2000) High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. J Clin Invest 105:653–62

    CAS  PubMed Central  PubMed  Google Scholar 

  • McMahon TJ, Moon RE, Luschinger BP et al (2002) Nitric oxide in the human respiratory cycle. Nat Med 8:711–7

    CAS  PubMed  Google Scholar 

  • Mehta SR, Yusuf S, Diaz R et al (2005) Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREATE-ECLA randomized controlled trial. JAMA 293:437–46

    PubMed  Google Scholar 

  • Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol 274:R577–95

    CAS  PubMed  Google Scholar 

  • Meldrum DR, Dinarello CA, Cleveland JC Jr et al (1998) Hydrogen peroxide induces tumor necrosis factor alpha-mediated cardiac injury by a P38 mitogen-activated protein kinase-dependent mechanism. Surgery 124:291–6

    CAS  PubMed  Google Scholar 

  • Mishra S, Fujita T, Lama VN et al (2006) Carbon monoxide rescues ischemic lungs by interrupting MAPK-driven expression of early growth response 1 gene and its downstream target genes. Proc Natl Acad Sci USA 103:5191–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X, Feng Q (2004) In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 287:1813–20

    Google Scholar 

  • Moens AL, Claeys MJ, Timmermans JP, Vrints CJ (2005) Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol 100:179–90

    CAS  PubMed  Google Scholar 

  • Morales-Alamo D, Ponce-González JG, Guadalupe-Grau A, Rodríguez-García L, Santana A, Cusso R, Guerrero M, Dorado C, Guerra B, Calbet JA (2013) Critical role for free radicals on sprint exercise-induced CaMKII and AMPKα phosphorylation in human skeletal muscle. J Appl Physiol 114:566–577

    CAS  PubMed  Google Scholar 

  • Moynagh PN, Williams DC, O'Neill LA (1994) Activation of NF-kappa B and induction of vascular cell adhesion molecule-1 and intracellular adhesion molecule-1 expression in human glial cells by IL-1. Modulation by antioxidants. J Immunol 153:2681–90

    CAS  PubMed  Google Scholar 

  • Mueller CF, Widder JD, McNally JS, McCann L, Jones DP, Harrison DG (2005) The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress. Circulation Res 97:637–44

    CAS  PubMed  Google Scholar 

  • Mullen MJ, Wright D, Donald AE, Thorne S, Thomson H, Deanfield JE (2000) Atorvastatin but not L-arginine improves endothelial function in type I diabetes mellitus: a double-blind study. JACC 36:410–6

    CAS  PubMed  Google Scholar 

  • Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–73

    CAS  PubMed  Google Scholar 

  • Murphy TV, Spurrell BE, Hill MA (2001) Tyrosine phosphorylation following alterations in arteriolar intraluminal pressure and wall tension. Am J Phsiol Heart Circ Physiol 281:H1047–56

    CAS  Google Scholar 

  • Nakagami H, Takemoto M, Liao JK (2003) NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35:851–9

    CAS  PubMed  Google Scholar 

  • Nakamura K, Fushimi K, Kouchi H et al (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–9

    CAS  PubMed  Google Scholar 

  • Nakamura K, Kusano KF, Matsubara H et al (2005) Relationship between oxidative stress and systolic dysfunction in patients with hypertrophic cardiomyopathy. J Card Fail 11:117–23

    CAS  PubMed  Google Scholar 

  • Neuman RB, Bloom HL, Shukrullah I et al (2007) Oxidative stress markers are associated with persistent atrial fibrillation. Clin Chem 53:1652–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neunteufl T, Priglinger U, Heher S et al (2000) Effects of vitamin E on chronic and acute endothelial dysfunction in smokers. JACC 35:277–83

    CAS  PubMed  Google Scholar 

  • Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–53

    CAS  PubMed  Google Scholar 

  • Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–7

    CAS  PubMed  Google Scholar 

  • Noriega-Cisneros R, Cortés-Rojo C, Manzo-Avalos S, Clemente-Guerrero M, Calderón-Cortés E, Salgado-Garciglia R, Montoya-Pérez R, Boldogh I, Saavedra-Molina A (2013) Mitochondrial response to oxidative and nitrosative stress in early stages of diabetes. Mitochondrion 13:1567–7249

    Google Scholar 

  • Omenn GS, Goodman GE, Thornquist MD et al (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. NEJM 334:1150–5

    CAS  PubMed  Google Scholar 

  • Ono H, Osanai T, Ishizaka H et al (2004) Nicorandil improves cardiac function and clinical outcome in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention: role of inhibitory effect on reactive oxygen species formation. Am Heart J 148:E15

    PubMed  Google Scholar 

  • Oral H, Kapadia S, Nakano M et al (1995) Tumor necrosis factor-alpha and the failing human heart. Clin Cardiol 18:IV20–7

    CAS  PubMed  Google Scholar 

  • Ovize M, Baxter GF, Di Lisa F et al (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. CardiovascRes 87:406–23

    CAS  Google Scholar 

  • Palace V, Kumar D, Hill MF, Khaper N, Singal PK (1999) Regional differences in non-enzymatic antioxidants in the heart under control and oxidative stress conditions. J Mol Cell Cardiol 31:193–202

    CAS  PubMed  Google Scholar 

  • Paravicini TM, Touyz RM (2006) Redox signaling in hypertension. Cardiovas Res 71:247–58

    CAS  Google Scholar 

  • Paravicini TM, Touyz RM (2008) NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31(Suppl 2):S170–80

    CAS  PubMed  Google Scholar 

  • Parinandi NL, Scribner WM, Vepa S, Shi S, Natarajan V (1999) Phospholipase D activation in endothelial cells is redox sensitive. Antioxid Redox Signal 1:193–210

    CAS  PubMed  Google Scholar 

  • Park JL, Lucchesi BR (1999) Mechanisms of myocardial reperfusion injury. Ann Thoracic Surg 68:1905–12

    CAS  Google Scholar 

  • Penna C, Rastaldo R, Mancardi D et al (2006) Effect of endothelins on the cardiovascular system. J Cardiovasc Med 7:645–52

    Google Scholar 

  • Perez NG, Gao WD, Marban E (1998) Novel myofilament Ca2 + −sensitizing property of xanthine oxidase inhibitors. Circ Res 83:423–30

    CAS  PubMed  Google Scholar 

  • Philbin EF, Rocco TA Jr, Lynch LJ, Rogers VA, Jenkins P (1997) Predictors and determinants of hospital length of stay in congestive heart failure in ten community hospitals. J Heart Lung Transplant 16:548–55

    CAS  PubMed  Google Scholar 

  • Pignataro G, Meller R, Inoue K et al (2008) In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: ischemic postconditioning. J Cereb Blood Flow Metab 28:232–41

    CAS  PubMed  Google Scholar 

  • Pi Y, Zhang LL, Li BH, Guo L, Cao XJ, Gao CY, Li JC (2013) Inhibition of reactive oxygen species generation attenuates TLR4-mediated proinflammatory and proliferative phenotype of vascular smooth muscle cells. Lab Invest [Epub ahead of print]

    Google Scholar 

  • Pimentel DR, Amin JK, **ao L et al (2001) Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89:453–60

    CAS  PubMed  Google Scholar 

  • Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovascular Res 38:291–300

    CAS  Google Scholar 

  • Poderoso JJ, Peralta JG, Lisdero CL et al (1998) Nitric oxide regulates oxygen uptake and hydrogen peroxide release by the isolated beating rat heart. Am J Physiol 274:C112–9

    CAS  PubMed  Google Scholar 

  • Pritchard KA Jr, Groszek L, Smalley DM et al (1995) Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. CirculationRes 77:510–8

    CAS  Google Scholar 

  • Puig JG, Mateos FA, Diaz VD (1989) Inhibition of xanthine oxidase by allopurinol: a therapeutic option for ischaemia induced pathological processes? Ann Rheum Dis 48:883–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajagopalan S, Kurz S, Munzel T et al (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramachandran A, Moellering DR, Ceaser E, Shiva S, Xu J, Darley-Usmar V (2002) Inhibition of mitochondrial protein synthesis results in increased endothelial cell susceptibility to nitric oxide-induced apoptosis. Proc Natl Acad Sci USA 99:6643–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rayment NB, Haven AJ, Madden B et al (1999) Myocyte loss in chronic heart failure. J Pathol 188:213–9

    CAS  PubMed  Google Scholar 

  • Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ (2001) Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(−) and systolic blood pressure in mice. Circ Res 89:408–14

    CAS  PubMed  Google Scholar 

  • Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richter C, Gogvadze V, Laffranchi R et al (1995) Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta 1271:67–74

    PubMed  Google Scholar 

  • Ridnour LA, Thomas DD, Mancardi D et al (2004) The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem 385:1–10

    CAS  PubMed  Google Scholar 

  • Roederer M, Staal FJ, Raju PA, Ela SW, Herzenberg LA (1990) Cytokine-stimulated human immunodeficiency virus replication is inhibited by N-acetyl-L-cysteine. Proc Natl Acad Sci USA 87:4884–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–20

    CAS  PubMed  Google Scholar 

  • Rubbo H, O'Donnell V (2005) Nitric oxide, peroxynitrite and lipoxygenase in atherogenesis: mechanistic insights. Toxicology 208:305–17

    CAS  PubMed  Google Scholar 

  • Rubbo H, Tarpey M, Freeman BA (1995) Nitric oxide and reactive oxygen species in vascular injury. Biochem Soc Symp 61:33–45

    CAS  PubMed  Google Scholar 

  • Sabri A, Hughie HH, Lucchesi PA (2003) Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal 5:731–40

    CAS  PubMed  Google Scholar 

  • Saito Y, Berk BC (2001) Transactivation: a novel signaling pathway from angiotensin II to tyrosine kinase receptors. J Mol Cell Cardiol 33:3–7

    CAS  PubMed  Google Scholar 

  • Salonen RM, Nyyssonen K, Kaikkonen J et al (2003) Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. Circulation 107:947–53

    CAS  PubMed  Google Scholar 

  • Sawyer DB, Siwik DA, **ao L, Pimentel DR, Singh K, Colucci WS (2002) Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol 34:379–88

    CAS  PubMed  Google Scholar 

  • Schachinger V, Zeiher AM (1995) Quantitative assessment of coronary vasoreactivity in humans in vivo. Importance of baseline vasomotor tone in atherosclerosis. Circulation 92:2087–94

    CAS  PubMed  Google Scholar 

  • Schechter AN, Gladwin MT (2003) Hemoglobin and the paracrine and endocrine functions of nitric oxide. New Eng J Med 348:1483–5

    CAS  PubMed  Google Scholar 

  • Scheffzek K, Stephan I, Jensen ON, Illenberger D, Gierschik P (2000) The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI. Nat Struct Biol 7:122–6

    CAS  PubMed  Google Scholar 

  • Schocken DD, Benjamin EJ, Fonarow GC et al (2008) Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 117:2544–65

    PubMed  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz E, Jansen T, Wenzel P, Daiber A, Munzel T (2008) Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal 10:1115–26

    CAS  PubMed  Google Scholar 

  • Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK (2002) Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 91:406–13

    CAS  PubMed  Google Scholar 

  • Sharma R, Bolger AP, Li W et al (2003) Elevated circulating levels of inflammatory cytokines and bacterial endotoxin in adults with congenital heart disease. Am J Cardiol 92:188–93

    CAS  PubMed  Google Scholar 

  • Shinyashiki M, Pan CJ, Lopez BE, Fukuto JM (2004) Inhibition of the yeast metal reductase heme protein fre1 by nitric oxide (NO): a model for inhibition of NADPH oxidase by NO. Free Radic Biol Med 37:713–23

    CAS  PubMed  Google Scholar 

  • Silverman ES, Collins T (1999) Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 154:665–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sirker A, Zhang M, Murdoch C, Shah AM (2007) Involvement of NADPH oxidases in cardiac remodelling and heart failure. Am J Nephrol 27:649–60

    CAS  PubMed  Google Scholar 

  • Sliwa K, Skudicky D, Candy G, Wisenbaugh T, Sareli P (1998) Randomised investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 351:1091–3

    CAS  PubMed  Google Scholar 

  • Staat P, Rioufol G, Piot C et al (2005) Postconditioning the human heart. Circulation 112:2143–8

    PubMed  Google Scholar 

  • Staels B, Koenig W, Habib A et al (1998) Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 393:790–3

    CAS  PubMed  Google Scholar 

  • Staudt A, Schaper F, Stangl V et al (2001) Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation 103:2681–6

    CAS  PubMed  Google Scholar 

  • Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347:781–6

    CAS  PubMed  Google Scholar 

  • Stocker R, Keaney JF Jr (2005) New insights on oxidative stress in the artery wall. J Thrombosis Haemostasis JTH 3:1825–34

    CAS  Google Scholar 

  • Stoker AW (2005) Protein tyrosine phosphatases and signalling. J Endocrinol 185:19–33

    CAS  PubMed  Google Scholar 

  • Sukhatme VP, Cao XM, Chang LC et al (1988) A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53:37–43

    CAS  PubMed  Google Scholar 

  • Sumi D, Hayashi T, Thakur NK et al (2001) A HMG-CoA reductase inhibitor possesses a potent anti-atherosclerotic effect other than serum lipid lowering effects–the relevance of endothelial nitric oxide synthase and superoxide anion scavenging action. Atherosclerosis 155:347–57

    CAS  PubMed  Google Scholar 

  • Sun HY, Wang NP, Halkos M et al (2006) Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis 11:1583–93

    CAS  PubMed  Google Scholar 

  • Sundar SV, Li YY, Rollwagen FM, Maheshwari RK (2005) Hemorrhagic shock induces differential gene expression and apoptosis in mouse liver. Biochem Biophys Res Commun 332:688–96

    CAS  PubMed  Google Scholar 

  • Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–9

    CAS  PubMed  Google Scholar 

  • Suzuki YJ, Ford GD (1999) Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Biol 31:345–53

    CAS  Google Scholar 

  • Suzuki YJ, Packer L (1993) Inhibition of NF-kappa B DNA binding activity by alpha-tocopheryl succinate. Biochem Mol Biol Int 31:693–700

    CAS  PubMed  Google Scholar 

  • Suzuki YJ, Aggarwal BB, Packer L (1992) Alpha-lipoic acid is a potent inhibitor of NF-kappa B activation in human T cells. BBRC 189:1709–15

    CAS  PubMed  Google Scholar 

  • Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–85

    CAS  PubMed  Google Scholar 

  • Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A (1998) Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 97:2222–9

    CAS  PubMed  Google Scholar 

  • Tang Y, Xu J, Qu W, Peng X, **n P, Yang X, Ying C, Sun X, Hao L (2012) Resveratrol reduces vascular cell senescence through attenuation of oxidative stress by SIRT1/NADPH oxidase-dependent mechanisms. J Nutr Biochem 23:1410–6

    CAS  PubMed  Google Scholar 

  • Tatsumi T, Matoba S, Kawahara A et al (2000) Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. JACC 35:1338–46

    CAS  PubMed  Google Scholar 

  • Tatton W, Chalmers-Redman R, Tatton N (2003) Neuroprotection by deprenyl and other propargylamines: glyceraldehyde-3-phosphate dehydrogenase rather than monoamine oxidase B. J Neural Trans 110:509–15

    CAS  Google Scholar 

  • Terada K, Kaziro Y, Satoh T (2000) Analysis of Ras-dependent signals that prevent caspase-3 activation and apoptosis induced by cytokine deprivation in hematopoietic cells. BBRC 267:449–55

    CAS  PubMed  Google Scholar 

  • The EMIP-FR Group. European Myocardial Infarction Project–Free Radicals (2000) Effect of 48-h intravenous trimetazidine on short- and long-term outcomes of patients with acute myocardial infarction, with and without thrombolytic therapy; A double-blind, placebo-controlled, randomized trial. Euro Heart J 21:1537–1546

    Google Scholar 

  • Thibault H, Piot C, Staat P et al (2008) Long-term benefit of postconditioning. Circulation 117:1037–44

    CAS  PubMed  Google Scholar 

  • Torre-Amione G, Wallace CK, Young JB et al (2007) The effect of etanercept on cardiac transplant recipients: a study of TNFalpha antagonism and cardiac allograft hypertrophy. Transplantation 84:480–3

    CAS  PubMed  Google Scholar 

  • Touyz RM, Schiffrin EL (2004) Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 122:339–52

    CAS  PubMed  Google Scholar 

  • Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–2

    CAS  PubMed  Google Scholar 

  • Tsujita K, Shimomura H, Kaikita K et al (2006) Long-term efficacy of edaravone in patients with acute myocardial infarction. Circ J 70:832–7

    CAS  PubMed  Google Scholar 

  • Tsuruta F, Masuyama N, Gotoh Y (2002) The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem 277:14040–7

    CAS  PubMed  Google Scholar 

  • Turnbull F, Neal B, Pfeffer M et al (2007) Blood pressure-dependent and independent effects of agents that inhibit the renin-angiotensin system. J Hypertens 25:951–8

    PubMed  Google Scholar 

  • Turner MW (2003) The role of mannose-binding lectin in health and disease. Molec Immunol 40:423–9

    CAS  Google Scholar 

  • Ungvari Z, Csiszar A, Huang A, Kaminski PM, Wolin MS, Koller A (2003) High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Circulation 108:1253–8

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273:15022–9

    CAS  PubMed  Google Scholar 

  • Vakeva AP, Agah A, Rollins SA, Matis LA, Li L, Stahl GL (1998) Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation 97:2259–67

    CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–208

    CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    CAS  PubMed  Google Scholar 

  • Vasquez-Vivar J, Kalyanaraman B, Martasek P et al (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95:9220–5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vassalle C, Pratali L, Boni C, Mercuri A, Ndreu R (2008) An oxidative stress score as a combined measure of the pro-oxidant and anti-oxidant counterparts in patients with coronary artery disease. Clin Biochem 41:1162–7

    CAS  PubMed  Google Scholar 

  • Vepa S, Scribner WM, Parinandi NL, English D, Garcia JG, Natarajan V (1999) Hydrogen peroxide stimulates tyrosine phosphorylation of focal adhesion kinase in vascular endothelial cells. Am J Physiol 277:L150–8

    CAS  PubMed  Google Scholar 

  • Viedt C, Soto U, Krieger-Brauer HI et al (2000) Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 20:940–8

    CAS  PubMed  Google Scholar 

  • Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61:481–97

    CAS  PubMed  Google Scholar 

  • Vinten-Johansen J, Zhao ZQ, Jiang R, Zatta AJ (2005) Myocardial protection in reperfusion with postconditioning. Expert Rev Cardiovasc Ther 3:1035–45

    PubMed  Google Scholar 

  • Vorbach C, Harrison R, Capecchi MR (2003) Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends Immunol 24:512–7

    CAS  PubMed  Google Scholar 

  • Warnholtz A, Nickenig G, Schulz E et al (1999) Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99:2027–33

    CAS  PubMed  Google Scholar 

  • Wassmann S, Faul A, Hennen B, Scheller B, Bohm M, Nickenig G (2003) Rapid effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition on coronary endothelial function. Circ Res 93:e98–103

    CAS  PubMed  Google Scholar 

  • Weight SC, Bell PR, Nicholson ML (1996) Renal ischaemia–reperfusion injury. Br J Surg 83:162–70

    CAS  PubMed  Google Scholar 

  • Weisman HF, Bartow T, Leppo MK et al (1990) Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249:146–51

    CAS  PubMed  Google Scholar 

  • Weyrich AS, Ma XL, Lefer AM (1992) The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation 86:279–88

    CAS  PubMed  Google Scholar 

  • White CM, Kluger J, Lertsburapa K, Faheem O, Coleman CI (2007) Effect of preoperative angiotensin converting enzyme inhibitor or angiotensin receptor blocker use on the frequency of atrial fibrillation after cardiac surgery: a cohort study from the atrial fibrillation suppression trials II and III. Euro J Cardio-Thoracic Surg Off J Euro Assoc Cardio Thoracic Surg 31:817–20

    Google Scholar 

  • Willemsen S, Hartog JW, van Veldhuisen DJ, van der Meer P, Roze JF, Jaarsma T, Schalkwijk C, van der Horst IC, Hillege HL, Voors AA (2012) The role of advanced glycation end-products and their receptor on outcome in heart failure patients with preserved and reduced ejection fraction. Am Heart J 164:742–749

    CAS  PubMed  Google Scholar 

  • Winyard PG, Blake DR (1997) Antioxidants, redox-regulated transcription factors, and inflammation. Adv Pharmacol 38:403–21

    CAS  PubMed  Google Scholar 

  • Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem Sci 30:453–61

    CAS  PubMed  Google Scholar 

  • Wolinsky FD, Overhage JM, Stump TE, Lubitz RM, Smith DM (1997) The risk of hospitalization for congestive heart failure among older adults. Med Care 35:1031–43

    CAS  PubMed  Google Scholar 

  • Wung BS, Cheng JJ, Chao YJ, Hsieh HJ, Wang DL (1999) Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response-1 gene expression in endothelial cells. Circulation Res 84:804–12

    CAS  PubMed  Google Scholar 

  • Xu Q, Konta T, Nakayama K et al (2004) Cellular defense against H2O2-induced apoptosis via MAP kinase-MKP-1 pathway. Free Radic Biol Med 36:985–93

    CAS  PubMed  Google Scholar 

  • Yamaguchi H, Wang HG (2001) The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20:7779–86

    CAS  PubMed  Google Scholar 

  • Yan SFLJ, Zou YS, Jae SW, Cohen DM, Butrick PM, Cooper DR, Steinberg SFMN, Pinsky DJ, Stern DM (1999) Hypoxia- associated induction of early growth response-1 gene expression. J Biol Chem 274:10

    Google Scholar 

  • Yan SFT, Lu J, Okada K, Zou Y, Mackman N, Pinky D, Stern D (2000) Egr-1 a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 6(12):1355–61

    Google Scholar 

  • Yang M, Kahn AM (2006) Insulin-stimulated NADH/NAD + redox state increases NAD(P)H oxidase activity in cultured rat vascular smooth muscle cells. Am J Hypertens 19:587–92

    CAS  PubMed  Google Scholar 

  • Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. JACC 44:1103–10

    PubMed  Google Scholar 

  • Yang XM, Philipp S, Downey JM, Cohen MV (2006) Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 101:311–8

    CAS  PubMed  Google Scholar 

  • Yang XC, Liu Y, Wang LF et al (2007) Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J Invasive Cardiol 19:424–30

    PubMed  Google Scholar 

  • Yellon DM, Baxter GF (1999) Reperfusion injury revisited: is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc Med 9:245–9

    CAS  PubMed  Google Scholar 

  • Yndestad A, Damas JK, Oie E, Ueland T, Gullestad L, Aukrust P (2007) Role of inflammation in the progression of heart failure. Curr Cardiol Rep 9:236–41

    PubMed  Google Scholar 

  • Yoshida J, Yamamoto K, Mano T et al (2004) AT1 receptor blocker added to ACE inhibitor provides benefits at advanced stage of hypertensive diastolic heart failure. Hypertension 43:686–91

    CAS  PubMed  Google Scholar 

  • Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. NEJM 342:154–60

    CAS  PubMed  Google Scholar 

  • Yusuf S, Teo KK, Pogue J et al (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. NEJM 358:1547–59

    CAS  PubMed  Google Scholar 

  • Zarzuelo MJ, López-Sepúlveda R, Sánchez M, Romero M, Gómez-Guzmán M, Ungvary Z, Pérez-Vizcaíno F, Jiménez R, Duarte J (2013) SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging. Biochem Pharmacol 85:1288–96

    CAS  PubMed  Google Scholar 

  • Zatta AJ, Kin H, Lee G et al (2006) Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovasc Res 70:315–24

    CAS  PubMed  Google Scholar 

  • Zeiher AM, Schachlinger V, Hohnloser SH, Saurbier B, Just H (1994) Coronary atherosclerotic wall thickening and vascular reactivity in humans. Elevated high-density lipoprotein levels ameliorate abnormal vasoconstriction in early atherosclerosis. Circulation 89:2525–32

    CAS  PubMed  Google Scholar 

  • Zeymer U, Suryapranata H, Monassier JP et al (2001) The Na(+)/H(+) exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the evaluation of the safety and cardioprotective effects of eniporide in acute myocardial infarction (ESCAMI) trial. JACC 38:1644–50

    CAS  PubMed  Google Scholar 

  • Zhao ZQ, Vinten-Johansen J (2006) Postconditioning: reduction of reperfusion-induced injury. Cardiovasc Res 70:200–11

    CAS  PubMed  Google Scholar 

  • Zhao ZQ, Lefer DJ, Sato H, Hart KK, Jefforda PR, Vinten-Johansen J (1997) Monoclonal antibody to ICAM-1 preserves postischemic blood flow and reduces infarct size after ischemia-reperfusion in rabbit. J Leukocyte Biol 62:292–300

    CAS  PubMed  Google Scholar 

  • Zhao ZQ, Corvera JS, Halkos ME et al (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:579–88

    Google Scholar 

  • Zhao W, Zhao D, Yan R, Sun Y (2009a) Cardiac oxidative stress and remodeling following infarction: role of NADPH oxidase. Cardiovasc Pathol 18:156–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao WS, Xu L, Wang LF et al (2009b) A 60-s postconditioning protocol by percutaneous coronary intervention inhibits myocardial apoptosis in patients with acute myocardial infarction. Apoptosis 14:1204–11

    PubMed  Google Scholar 

  • Zheng JS, Yang XQ, Lookingland KJ et al (2003) Gene transfer of human guanosine 5'-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension. Circulation 108:1238–45

    CAS  PubMed  Google Scholar 

  • Zheng X, Lian D, Wong A et al (2009) Novel small interfering RNA-containing solution protecting donor organs in heart transplantation. Circulation 120:1099–1107

    CAS  PubMed  Google Scholar 

  • Zhou MS, Adam AG, Jaimes EA, Raij L (2003) In salt-sensitive hypertension, increased superoxide production is linked to functional upregulation of angiotensin II. Hypertension 42:945–51

    CAS  PubMed  Google Scholar 

  • Zhu M, Feng J, Lucchinetti E et al (2006) Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res 72:152–62

    CAS  PubMed  Google Scholar 

  • Zorio E, Gilabert-Estelles J, Espana F, Ramon LA, Cosin R, Estelles A (2008) Fibrinolysis: the key to new pathogenetic mechanisms. Curr Med Chem 15:923–9

    CAS  PubMed  Google Scholar 

  • Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–90

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir M. Matata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Elahi, M.M., Chuang, A., Matata, B.M. (2014). Overview of Oxidative Stress and Cardiovascular Disease. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_42

Download citation

Publish with us

Policies and ethics

Navigation