Global Terrestrial Reference Systems and Their Realizations

  • Chapter
  • First Online:
Sciences of Geodesy - II

Abstract

Geodetic reference systems are fundamental requisites for accurate and reliable geodetic results. Unambiguous reference systems are needed to refer the geodetic observations and estimated parameters to a unique global basis. Highly accurate, consistent and reliable realizations of the terrestrial reference systems are required for measuring and map** the Earth’s surface and its variations in time. These terrestrial reference frames are the basis for many practical applications, such as national and regional geodetic networks, engineering, precise navigation, geo-information systems, etc. as well as for scientific investigations in the Earth’s system (e.g., tectonic plate motion, sea level change, seasonal and secular loading signals, atmosphere dynamics and Earth orientation excitation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth sciene applications. J Geophys Res 107(B7):2214. doi:10.1029/2007JB000561

    Article  Google Scholar 

  • Altamimi Z, Sillard P, Boucher C (2003) The impact of a no-net-rotation condition on ITRF2000. Geophys Res Lett 30(2):1064. doi:10.1029/2992GL016270

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112:B09401. doi:10.1029/2007/JB004949

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Métivie L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod. doi:10.1007/s00190-011-0444-4

    Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector, earth plant. Sci Lett 171:329–334

    Google Scholar 

  • Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2004) ITRS combination center at DGFI: a terrestrial reference frame realization 2003, Deutsche Geodätische Kommission, Reihe B, Heft Nr. 313

    Google Scholar 

  • Angermann D, Krügel M, Meisel B, Müller H, Tesmer V (2005) Time evolution of the terrestrial reference frame. In: Sanso F (ed) A window on the future of geodesy. IAG symposia, vol 128. Springer, Heidelberg, pp 3–8

    Chapter  Google Scholar 

  • Angermann D, Drewes H, Krügel M, Meisel B (2007) Advances in terrestrial reference frame computations. In: Tregoning P, Rizos C (eds) Dynamic planet, IAG symposia, vol 130. Springer, Heidelberg, pp 595–602

    Google Scholar 

  • Angermann D, Drewes H, Gerstl M, Krügel M, Meisel B (2009) DGFI combination methodology for ITRF2005 computation. In: Drewes H (ed) Geodetic reference frames, IAG symposia, vol 134. Springer, Heidelberg, pp 11–16

    Chapter  Google Scholar 

  • Argus DF, Gordon RG (1991) No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys Res Lett 18(11):2039–2042. doi:10.1029/91GL01532

    Article  Google Scholar 

  • Bianco G, Devoti R, Fermi M (2000) Investigation of the combination of space techniques. J Geodyn 30(3):337–353

    Article  Google Scholar 

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid earth. J Geophys Res 108(B2):2203. doi:10.1029/2002JB002082

    Google Scholar 

  • Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84(3):201–219. doi:10.1007/s00190-009-0357-7

    Article  Google Scholar 

  • Böhm J, Niell A, Tregoning P, Schuh H (2006a) Global map** function (GMF): a new empirical map** function based on numerical weather model data. Geophys Res Lett 33: L07304. doi:10.1029/2005GL025546

  • Böhm J, Werl B, Schuh H (2006b) Troposphere map** functions for GPS and very long baseline interferometry from european centre for medium-range weather forecasts operational analysis data. J Geophys Res Solid Earth 111:2406. doi:10.1029/2005/JB003629

    Article  Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) Short-note: a global model of pressure and temperature for geodetic applications. J Geod doi:10.1007/s00190-007-0135-3

    Google Scholar 

  • Bosch W (2008) Der Meeresspiegel—ansteigend und fast im Lot. Akademie Aktuell, 01/2008, 30–33, ISSN: 1436-753X

    Google Scholar 

  • Boucher C, Altamimi Z (1985) Towards an improved realization of the BIH terrestrial reference frame. In: Mueller II (ed) The MERIT/COTES report on earth rotation and reference frames, vol 2. OSU/DGS, Columus

    Google Scholar 

  • Boucher C, Altamimi Z, Feissel M, Sillard P (1996) Results and analysis of the ITRF94, IERS technical note 20, Observatoire de Paris, Paris. Available at http://www.iers.org/TN20

  • Boucher C, Altamimi Z, Sillard P (1998) Results and analysis of the ITRF96, IERS Technical Note 24, Observatoire de Paris, Paris. Available at http://www.iers.org/TN24

  • Boucher C, Altamimi Z, Sillard P (1999) The 1997 international terrestrial reference frame (ITRF97), IERS Technical Note 27, Observatoire de Paris, Paris. Available at http://www.iers.org/TN27

  • Boucher C (2001) Terrestrial coordinate systems and frames. In: Encyclopedia of Astronomy and Astrophysics, Version 1.0. Nature Publishing Group, Institute of Physisc publishing, Bristol

    Google Scholar 

  • Boucher C, Altamimi Z, Sillard P, Feissel-Vernier M (2004) The ITRF2000, IERS Technical Note No. 31, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194. doi:10.1029/94GL02118

    Google Scholar 

  • Dong D, Yunck T, Heflin M (2002) Origin of the international terrestrial reference frame. J Geophys Res 108(B4):2200. doi:10.1029/2002JB002035

    Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83(4–5):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Drewes H, Angermann D (2003) Remarks on some problems in the combination of station coordinate and velocity solutions, IERS Technical Note 30, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, pp 89–93

    Google Scholar 

  • Drewes H, Angermann D, Gerstl M, Krügel M, Meisel B, Seemüller W (2006) Analysis and refined computations of the international terrestrial reference frame. In: Rothacher R, Rummel F, Schreiber B (eds) Observation of the earth system from space. Springer, Heidelberg

    Google Scholar 

  • Drewes H (2009a) Reference systems, reference frames, and the geodetic datum—basic considerations. In: Sideris M (ed) Observing the changing Earth, IAG symposia, vol 133. Springer, Heidelberg, pp 3–10

    Chapter  Google Scholar 

  • Drewes H (2009b) The APKIM2005 as basis for a non-rotating ITRF. In: Drewes H (ed) Geodetic reference frames, IAG symposia, vol 134. Springer, Heidelberg, pp 95–99

    Chapter  Google Scholar 

  • Ferland R (2010) Description of IGS submission to ITRF 2008. Available at: http://itrf.ensg.ign.fr/ITRF_solutions/doc/IGSsubmission4ITRF2008.txt

  • Gerstl M, Kelm R, Müller H, Ehrnsperger W (2000) DOGSCS Kombination und Lösung großer Gleichungssysteme. Interner Bericht, DGFI, München

    Google Scholar 

  • Gerstl M (2003) Numerical aspects on combination at the observation equation and normal equation level. IERS Technical Note 30, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, pp 89–93

    Google Scholar 

  • Gobinddass ML, Willis P, de Viron O et al (2009) Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure models. Adv Space Res 44(11):1279–1287. doi:10.1016/j.asr.2009.08.004

    Article  Google Scholar 

  • IPCC AR4 WG1 (2007), In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, and Miller HL (eds) Climate Change 2007 The physical science basis, contribution of working group I to the forth assessment report of the intergovernmental panel on climate change, Cambridge University Press, ISBN: 978-0-0521-88009-1

    Google Scholar 

  • IUGG (2007) International Union of Geodesy and Geophysics (IUGG) resolution number 2 of Perugia, IUGG General Assembly

    Google Scholar 

  • Kovalevsky J, Mueller II, Kolaczek B (eds) (1989) Reference frames in astrometry and geophysics. Kluwer Academic Publisher, Dordrecht, p 474

    Google Scholar 

  • Krügel M, Angermann D (2007) Frontiers in the combination of space geodetic techniques. In: Tregoning P, Rizos C (eds) Dynamic planet, IAG symposia, vol 130. Springer, Heidelberg, pp 158–165

    Google Scholar 

  • Meisel B, Angermann D, Krügel M, Drewes H, Gerstl M, Kelm R, Müller H, Tesmer V (2005) Refined approaches for terrestrial reference frame computations. Adv Space Res 36(3):350–357

    Article  Google Scholar 

  • Mendes VB, Pavlis EC (2004) High-accuracy zentith delay prediction at optical wavelengts. Geophys Res Lett 31:14602. doi:10.1029/2004GL020308

    Article  Google Scholar 

  • Minster JB, Jordan TH (1978) Present-day plate motions. Geophys J Int 83(B11):5331–5354. doi:10.1029/JB083iB11p0331

    Google Scholar 

  • MERIT/COTES joint working groups (1983) MERIT campaign: connection of reference frames, implementation plan

    Google Scholar 

  • Nothnagel A (2008) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83(8):787–792. doi:10.1007/s00190-008-284-z

    Article  Google Scholar 

  • Pavlis E, Luceri C, Sciaretta C, Kelm R (2010) The ILRS contribution to ITRF2008. Available at: http://itrf.ensg.ign.fr/ITRF_solutions/doc/-ILRSSubmission4ITRF2008.pdf

  • Pearlman M, Noll C, Gurtner W, Noomen R (2007) The international laser ranging service and its support for GGOS, dynamic planet—monitoring and understanding a dynamic planet with geodetic and oceanographic tools. In: Rizos C, Tregoning P (eds) IAG Symposia 130, Springer, Heidelberg, pp 741–748, ISBN: 978-3-540-49349-5

    Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS Conventions (2010) IERS Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, http://tai.bipm.org/iers/conv2010

  • Plag H-P, Pearlman M (eds) (2009) The global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin

    Google Scholar 

  • Rothacher M (2000) Towards an integrated global geodetic observing system, international association of geodesy symposia. In: Rummel R, Drewes H, Bosch W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS), vol 120. Springer, New York, pp 41–52

    Chapter  Google Scholar 

  • Sànchez L, Brunini C (2009) Achievements and challenges of SIRGAS. In: Drewes H (ed) Geodetic Reference Frames, IAG Symposia, vol. 134, Springer, Berlin, pp 161–169. doi:10.1007/978-3-642-00860-3_42

  • Sánchez L, Seemüller W, Drewes H, Mateo L, González G, da Silva, Pampillón J, Martinez W, Cioce V, Cisneros D, Cimbaro S (2012) Long-term stability of the SIRGAS Reference Frame and episodic station movements caused by the seismic activity in the SIRGAS region. Proceedings of the IAG Symposium REFAG2010, Springer (accepted)

    Google Scholar 

  • Schlüter W, Behrend D (2007) The International VLBI Service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geodesy 81(6–8):379–387

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Seitz M (2009) Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems, Deutsche Geodätische Kommission, Reihe C, Heft Nr. 630, München

    Google Scholar 

  • Seitz F, Krügel M (2009) Inverse model approach for vertical load deformations in consideration of crustal inhomogeneities. In: Drewes H (ed): Geodetic reference frames, IAG symposia, vol. 134, pp 23–29, Springer, Heidelberg. doi:10.1007/978-3-642-00860-3_4

  • Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The DGFI Realization of the ITRS: DTRF2008. J Geod. doi:10.1007/s00190-012-0567-2

  • Valette JJ, Lemoine FG, Ferrage P, Yaya P, Altamimi Z, Willis P, Soudarin L (2010) IDS contribution to ITRF2008. In: Willis P (ed) DORIS: precise orbit determination and applications to the earth sciences, Advanced. Space Research. doi:10.1016/j.asr.2010.05.029

  • Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010) The International DORIS Service, toward majurity. In: Willis P (ed) DORIS: scientific applications in geodesy and geophysics. Adv Space Res 45(12):1408–1420. doi:1016/j.asr.2009.11.018

  • Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geod 58:44–61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Angermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angermann, D., Seitz, M., Drewes, H. (2013). Global Terrestrial Reference Systems and Their Realizations. In: Xu, G. (eds) Sciences of Geodesy - II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28000-9_3

Download citation

Publish with us

Policies and ethics

Navigation