General Anesthetics

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 508 Accesses

Abstract

The first agents which could be used as intravenous anesthetics were barbiturates. Barbiturates with a duration of action appropriate to the requirements of surgery became available with the introduction of hexobarbital and thiopental (Volwiler and Tabern 1930; Miller et al. 1936). The studies with barbiturates were extended (Butler and Bush 1942; Christensen and Lee 1973). Intravenous anesthetics from other chemical groups were developed, such as acetamidoeugenol (Estil, Domenjoz 1959), steroid derivatives (Presuren = hydroxydione sodium, Laubach et al. 1955; alfaxolone, CT1341, Child et al. 1971), propanidid (Goidenthai 1971), ketamine (CI-581, Chen et al. 1966; Reich and Silvay 1989), etomidate (Janssen et al. 1975), propofol (ICI 35868, Glen 1980), and midazolam (Pieri 1983; Reilly and Nimmo 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

Intravenous Anesthesia

  • BĂĽch H, Butello W, Neurohr O, Rummel W (1968) Vergleich von Verteilung, narkotischer Wirksamkeit und metabolischer Elimination der optischen Antipoden von Methylphenobarbital. Biochem Pharmacol 17:2391–2398

    Google Scholar 

  • BĂĽch H, Grund W, Buzello W, Rummel W (1969) Narkotische Wirksamkeit und Gewebsverteilung der optischen Antipoden des Pentobarbitals bei der Ratte. Biochem Pharmacol 18:1005–1009

    Article  PubMed  Google Scholar 

  • Butler TC, Bush MT (1942) Anesthetic potency of some new derivatives of barbituric acid. Proc Soc Exp Biol Med 50:232–243

    Article  CAS  Google Scholar 

  • Chen G, Ensor CR, Bohner B (1966) The Neuropharmacol of 2-(o-chlorophenyl)-2-methylaminocyclohexanone hydrochloride. J Pharmacol Exp Ther 152:332–339

    Google Scholar 

  • Child KJ, Currie JP, Davis B, Dodds MG, Pearce DR, Twissell DJ (1971) The pharmacological properties in animals of CT1341 – a new steroid anaesthetic agent. Br J Anaesth 43:2–24

    Google Scholar 

  • Christensen HD, Lee IS (1973) Anesthetic potency and acute toxicity of optically active disubstituted barbituric acids. Toxicol Appl Pharmacol 26:495–503

    Google Scholar 

  • Domenjoz R (1959) Anaesthesist 8:16

    CAS  PubMed  Google Scholar 

  • Glen JB (1980) Animal studies of the anesthetic activity of ICI 35868. Br J Anaesth 52:731–742

    Google Scholar 

  • Goldenthal EI (1971) A compilation of LD50 values in newborn and adult animals. Toxicol Appl Pharmacol 18:185–207

    Article  CAS  PubMed  Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Marsboom RPH (1975) Etomidate, a potent non-barbiturate hypnotic. Intravenous etomidate in mice, rats, guinea pigs, rabbits and dogs. Arch Int Pharmacodyn Ther 214:92–132

    Google Scholar 

  • Laubach GD, Pan SY, Rudel HW (1955) Steroid anesthetic agent. Science 122:78

    Article  CAS  PubMed  Google Scholar 

  • Miller E, Munch JC, Crossley FS, Hartung WH (1936) J Am Chem Soc 58:1090

    Article  CAS  Google Scholar 

  • Pieri L (1984) Preclinical pharmacology of midazolam. Br J Clin Pharmacol 16:17S–27S

    Article  Google Scholar 

  • Reich DL, Silvay G (1989) Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth 36:186–197

    Article  CAS  PubMed  Google Scholar 

  • Reilly CS, Nimmo WS (1987) New intravenous anaesthetics and neuromuscular blocking drugs. Drugs 34:98–135

    Google Scholar 

  • Volwiler EH, Tabern DL (1930) J Am Chem Soc 52:1676

    Google Scholar 

Screening of Intravenous Anesthetics

  • BĂĽch H, Butello W, Neurohr O, Rummel W (1968) Vergleich von Verteilung, narkotischer Wirksamkeit und metabolischer Elimination der optischen Antipoden von Methylphenobarbital. Biochem Pharmacol 17:2391–2398

    Google Scholar 

  • Chen G, Ensor CR, Bohner B (1966) The Neuropharmacol of 2-(o-chlorophenyl)-2-methylaminocyclohexanone hydrochloride. J Pharmacol Exp Ther 152:332–339

    Google Scholar 

  • Child KJ, Currie JP, Davis B, Dodds MG, Pearce DR, Twissell DJ (1971) The pharmacological properties in animals of CT1341 – a new steroid anaesthetic agent. Br J Anaesth 43:2–24

    Google Scholar 

  • Christensen HD, Lee IS (1973) Anesthetic potency and acute toxicity of optically active disubstituted barbituric acids. Toxicol Appl Pharmacol 26:495–503

    Google Scholar 

  • Dingwall B, Reeve B, Hutchinson M, Smith PF, Darlington CL (1993) The tolerometer: a fast, automated method for the measurement of righting reflex latency in chronic drug studies. J Neurosci Methods 48:11–114

    Article  Google Scholar 

  • Glen JB (1977) A technique for the laboratory evaluation of the speed of onset of i.v. anesthesia. Br J Anaesth 49:545–549

    Article  CAS  PubMed  Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Marsboom RPH (1975) Etomidate, a potent non-barbiturate hypnotic. Intravenous etomidate in mice, rats, guinea pigs, rabbits and dogs. Arch Int Pharmacodyn Ther 214:92–132

    Google Scholar 

  • Litchfield JT Jr, Wilcoxon FA (1949) Simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  PubMed  Google Scholar 

  • Michelsen LG, Salmenperä M, Hug CC, Sziam F, van der Meer D (1996) Anesthetic potency of remifentanil in dogs. Anesthesiology 84:865–872

    Article  CAS  PubMed  Google Scholar 

  • Reilly CS, Nimmo WS (1987) New intravenous anaesthetics and neuromuscular blocking drugs. Drugs 34:98–135

    Google Scholar 

  • Volwiler EH, Tabern DL (1930) 5,5-Substituted barbituric acids. J Am Chem Soc 52:1676–1679

    Google Scholar 

EEG Threshold Test in Rats

  • Boiander HG, Wahlström G, Norberg L (1984) Reevaluation of potency and pharmacokinetic properties of some lipidsoluble barbiturates with an EEG-threshold method. Acta Pharmacol Toxicol 54:33–40

    Article  Google Scholar 

  • Korkmaz S, Wahlström G (1997) The EEG burst suppression threshold test for the determination of CNS sensitivity to intravenous anesthetics in rats. Brain Res Brain Res Protoc 1:378–384

    Article  CAS  PubMed  Google Scholar 

  • Koskela T, Wahlström G (1989) Comparison of anaesthetic and kinetic properties of thiobutabarbital, butabarbital and hexobarbital after intravenous threshold doses in the male rat. Pharmacol Toxicol 64:308–313

    Article  CAS  PubMed  Google Scholar 

  • Norberg L, Wahlström G (1988) Anaesthetic effects of flurazepam alone and in combination with thiopental or hexobarbital evaluated with an EEG-threshold method in male rats. Arch Int Pharmacodyn Ther 292:45–57

    CAS  PubMed  Google Scholar 

  • Norberg L, Wahlström G, Bäckström T (1987) The anaesthetic potency of 3α-hydroxy-5α-pregnan-20-one and 3αhydroxy-5β-pregnan-20-one determined with an intravenous EEG threshold method in male rats. Pharmacol Toxicol 61:42–47

    Article  CAS  PubMed  Google Scholar 

  • Wauquier A, De Ryck M, Van den Broeck W, Van Loon J, Melis W, Janssen P (1988) Relationships between quantitative EEG measures and pharmacodynamics of alfentanil in dogs. Electroencephalogr Clin Neurophysiol 69:550–560

    Article  CAS  PubMed  Google Scholar 

Efficacy and Safety of Intravenous Anesthetics

  • Borkowski GL, Dannemann PJ, Russel GB, Lang CM (1990) An evaluation of three intravenous regimens in New Zealand rabbits. Lab Anim Sci 40:270–276

    CAS  PubMed  Google Scholar 

  • Glen JB (1980) Animal studies of the anesthetic activity of ICI 35868. Br J Anaesth 52:731–742

    Google Scholar 

  • Murdock HR (1969) Anesthesia in the rabbit. Fed Proc 28:1510–1516

    PubMed  Google Scholar 

  • Peeters ME, Gil D, Teske E, Eyzenbach V, vd Brom WE, Lumeij JT, de Vries HW (1988) Four methods for general anesthesia in rabbits: a comparative study. Lab Anim 22:355–360

    Article  CAS  PubMed  Google Scholar 

Inhalation Anesthesia

  • Fang Z, Gong D, Ionescu P, Laster MJ, Eger EI II, Kendig J (1997) Maturation decreases ethanol minimum alveolar anesthetic concentration (MAC) more than desflurane MAC in rats. Anesth Analg 84:852–858

    Google Scholar 

  • Robbins BH (1946) Preliminary studies of the anesthetic activity of fluorinated hydrocarbons. J Pharmacol Exp Ther 86:197–204

    CAS  PubMed  Google Scholar 

  • Wolfson B, Dorsch SE, Kuo TS, Siker ES (1972) Brain anesthetic concentration – a new concept. Anesthesiology 36:176–179

    Article  CAS  PubMed  Google Scholar 

Screening of Volatile Anesthetics

  • Burgison RM (1964) Animal techniques for evaluating anesthetic drugs. In: Nodine JH, Siegler PE (eds) Animal and clinical techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 369–372

    Google Scholar 

  • Burns THS, Hall JM, Bracken A, Gouldstone G (1961) Investigation of new fluorine compounds in anaesthesia (3): the anaesthetic properties of hexafluorobenzene. Anaesthesia 16:333–339

    Article  CAS  PubMed  Google Scholar 

  • Ravento J, Spinks A (1958) Development of halothane. Methods of screening volatile anaesthetics. Manchester Univ Med School Gaz 37:55

    Google Scholar 

  • RaventĂłs J (1956) Action of fluothane a new volatile anaesthetic. Br J Pharmacol 11:394

    Google Scholar 

  • Van Poznak A, Artusio JF Jr (1960) Anesthetic compounds: II. Fluorinated ethers. Toxicol Appl Pharmacol 2:374

    Google Scholar 

Determination of Minimal Alveolar Anesthetic Concentration (MAC)

  • Davis NL, Nunnally RL, Malinin TI (1975) Determination of the minimal alveolar concentration (MAC) of halothane in the white New Zealand rabbit. Br J Anaesth 47:341–345

    Article  CAS  PubMed  Google Scholar 

  • Doquier MA, Lavand’homme P, Ledermann C, Collet V, de Kock M (2003) Can determining the minimum alveolar anesthetic concentration of volatile anesthetic be used as an objective tool to assess antinociception in animals? Anesth Analg 97:1033–1039

    Article  Google Scholar 

  • Eger EI II, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 26:756–763

    Article  PubMed  Google Scholar 

  • Eger EI II, Johnson BH, Weiskopf RB, Holmes MA, Yasuda N, Targ A, Rampil IJ (1988) Minimum alveolar concentration of I-653 and isoflurane in pigs. Anesth Analg 67:1174–1176

    Article  PubMed  Google Scholar 

  • Eger EI II, Ionescu P, Laster MJ, Gong D, Hudlicky T, Kendig JJ, Harrius RA, Trudell JR, Pohorille A (1999) Maximum alveolar anesthetic concentration of fluorinated alkanols in rats: relevance to theories of narcosis. Anesth Analg 88:867–876

    CAS  PubMed  Google Scholar 

  • Eger EI II, **ng Y, Laster M, Sonner J, Antognini JF, Carstens E (2003) Halothane and isofluroane have additive minimum alveolar concentration (MAC) effects in rats. Anesth Analg 96:1350–1353

    Article  PubMed  Google Scholar 

  • Fang Z, Gong D, Ionescu P, Laster MJ, Eger EI II, Kendig J (1997) Maturation decreases ethanol minimum alveolar anesthetic concentration (MAC) more than desflurane MAC in rats. Anesth Analg 84:852–858

    Google Scholar 

  • Gong D, Fang Z, Ionescu P, Laster M, Terrell RC, Eger EI II (1998) Strain minimally influences anesthetic and convulsant requirements of inhaled compounds in rats. Anesth Analg 87:963–966, Eger EI II

    CAS  PubMed  Google Scholar 

  • Hall RI, Murphy MR, Hug CC (1987) The enfluorane sparing effect in dogs. Anesthesiology 67:518–525

    Article  CAS  PubMed  Google Scholar 

  • Ide T, Sakurai Y, Aono M, Nishino T (1998) Minimum alveolar anesthetic concentrations for airway occlusion in cats: a new concept of minimum alveolar anesthetic concentration-airway occlusion response. Anesth Analg 86:191–197

    CAS  PubMed  Google Scholar 

  • Kashimoto S, Furuya A, Nonoka A, Oguchi T, Koshimizu M, Kumazawa T (1997) The minimum alveolar concentration of sevoflurane in rats. Eur J Anesth 14:359–361

    Article  CAS  Google Scholar 

  • Merkel G, Eger EI II (1963) A comparative study of halothane and halopropane anesthesia. Anesthesiology 24:346–357

    Article  CAS  PubMed  Google Scholar 

  • Murphy MR, Hug CC (1982) The anesthetic potency of fentanyl in terms of its reduction of enflurane MAC. Anesthesiology 57:485–488

    Article  CAS  PubMed  Google Scholar 

  • Quasha AL, Eger EI II, Tinker JH (1980) Determination and applications of MAC. Anesthesiology 53:315–334

    Article  CAS  PubMed  Google Scholar 

  • Regan MJ, Eger EI II (1967) Effect of hypothermia in dogs on anesthetizing and apneic doses of inhalation agents. Determination of the anesthetic index (Apnea/MAC). Anesthesiology 28:689–700

    Article  CAS  PubMed  Google Scholar 

  • Saidman LJ, Eger EI II (1964) Effect of nitrous oxide and narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 25:302–306

    Article  CAS  PubMed  Google Scholar 

  • Seifen E, Seifen AB, Kennedy RH, Bushman GA, Loss GE, Williams TG (1987) Comparison of cardiac effects of enflurane, isoflurane, and halothane in the dog heart-lung preparation. J Cardiothorac Anesth 1:543–553

    Article  CAS  PubMed  Google Scholar 

  • Sonner JM (2002) Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesth Analg 95:609–614

    CAS  PubMed  Google Scholar 

  • Waizer PR, Baez S, Orkin LR (1973) A method for determining minimum alveolar concentration of anesthetic in the rat. Anesthesiology 39:394–397

    Article  CAS  PubMed  Google Scholar 

Efficacy and Safety of Inhalation Anesthetics

  • Antognini JF, Eisele PH (1993) Anesthetic potency and cardiopulmonary effects of enfluorane, halothane, and isofluorane in goats. Lab Anim Sci 43:607–610

    CAS  PubMed  Google Scholar 

  • Cervin A, Lindberg S (1998) Changes in mucociliary activity may be used to investigate the airway-irritating potency of volatile anaesthetics. Br J Anaesth 80:475–480

    Article  CAS  PubMed  Google Scholar 

  • Chaves AA, Dech SJ, Nakayama T, Hamlin RL, Bauer JA, Carnes CA (2003) Age and anesthetic effects on murine electrocardiography. Life Sci 72:2401–2412

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H, Hirabayashi Y, Shimizu R, Saitoh K, Mitsuhata H (1996) Sevoflurane is equivalent to isoflurane for attenuating bupivacaine-induced arrhythmias and seizures in rats. Anesth Analg 83:570–573

    CAS  PubMed  Google Scholar 

  • Hanagata K, Matsukawa T, Sessler DI, Miyaji T, Funayama T, Koshimizu M, Kashimoto S, Kumazawa T (1995) Isoflurane and sevoflurane produce a dose-dependent reduction in the shivering threshold in rabbits. Anesth Analg 81:581–584

    CAS  PubMed  Google Scholar 

  • Hashimoto H, Imamura S, Ikeda K, Nakashima M (1994) Electrophysiological effects of volatile anesthetics, sevoflurane and halothane, in a canine myocardial infarction model. J Anesth 8:93–100

    Article  Google Scholar 

  • Hashimoto Y, Hirota K, Ohtomo N, Ishihara H, Matsuki A (1996) In vivo direct measurement of the bronchodilating effect of sevoflurane using a superfine fiberoptic bronchoscope: comparison with enflurane and halothane. J Cardiothorac Vasc Anesth 10:213–216

    Article  CAS  PubMed  Google Scholar 

  • Hirano M, Fujigaki T, Shibata O, Sumikawa K (1995) A comparison of coronary hemodynamics during isoflurane and sevoflurane anesthesia in dogs. Anesth Analg 80:651–656

    CAS  PubMed  Google Scholar 

  • Hisaka Y, Ohe N, Takase K, Ogasawara S (1997) Cardiopulmonary effects of sevoflurane in cats: comparison with isoflurane, halothane, and enflurane. Res Vet Sci 63:205–210

    Article  Google Scholar 

  • Johnson RA, Striler E, Sawyer DC, Brunson DB (1998) Comparison of isoflurane with sevoflurane for anesthesia induction and recovery in adult dogs. Am J Vet Res 59:478–481

    CAS  PubMed  Google Scholar 

  • Kanaya N, Kawana S, Tsuchida H, Miyamoto A, Ohshika H, Namiki A (1998) Comparative myocardial depression of sevoflurane, isofluorane, and halothane in cultured neonatal rat ventricular myocytes. Anesth Analg 67:1041–1047

    Google Scholar 

  • Kataoka Y, Manabe M, Takimoto E, Tokai H, Aono J, Hishiyama K, Ueda W (1994) Negative inotropic effects of sevoflurane, isoflurane, enflurane and halothane in canine blood-perfused papillary muscles. Anesth Resusc 30:73–76

    CAS  Google Scholar 

  • Kissin I, Morgan PL, Smith LR (1983) Comparison of isoflurane and halothane safety margins in rats. Anesthesiology 58:556–561

    Article  CAS  PubMed  Google Scholar 

  • Kissin I, Kerr CR, Smith LR (1984) Morphine-halothane interaction in rats. Anesthesiology 60:553–561

    Article  CAS  PubMed  Google Scholar 

  • Krantz JC Jr, Carr CJ, Forman SE, Evans WE Jr, Wollenweber H (1941) Anesthesia. IV. The anesthetic action of cyclopropylethyl ether. J Pharmacol Exp Ther 72:233–244

    CAS  Google Scholar 

  • Krantz JC Jr, Carr CJ, Lu G, Bell FK (1953) Anesthesia. XL. The anesthetic action of trifluoroethyl vinyl ether. J Pharmacol Exp Ther 108:488–495

    CAS  PubMed  Google Scholar 

  • Mazzeo AJ, Cheng EY, Bosnjak ZJ, Coon RL, Kampine JP (1996) Differential effects of desflurane and halothane on peripheral airway smooth muscle. Br J Anaesth 76:841–846

    Article  CAS  PubMed  Google Scholar 

  • McMurphy RM, Hodgson DS (1996) Cardiopulmonary effects of desflurane in cats. Am J Vet Res 57:367–370

    CAS  PubMed  Google Scholar 

  • Mitsuhata H, Saitoh J, Shimizu R, Takeuchi H, Hasome N, Horiguchi Y (1994) Sevoflurane and isoflurane protect against bronchospasm in dogs. Anesthesiology 81:1230–1234

    Article  CAS  PubMed  Google Scholar 

  • Mutoh T, Nishimura R, Kim HY, Matsunage S, Sasaki N (1997) Cardiopulmonary effects of sevoflurane, compared with halothane, enflurane, and isoflurane, in dogs. Am J Vet Res 58:885–890

    CAS  PubMed  Google Scholar 

  • Novalija E, Hogan QH, Kulier AH, Turner LH, Bosnjak ZJ (1998) Effects of desflurane, sevoflurane and halothane on postinfarction spontaneous dysrhythmias in dogs. Acta Anaesthesiol Scand 42:353–357

    Article  CAS  PubMed  Google Scholar 

  • Saeki Y, Hasegawa Y, Shibamoto T, Yamaguchi Y, Hayashi T, Tanaka S, Wang GH, Koyama S (1996) The effects of sevoflurane, enflurane, and isoflurane on baroreceptor-sympathetic reflex in rabbits. Anesth Analg 82:342–348

    CAS  PubMed  Google Scholar 

  • Salmempera M, Wilson D, Szlam F, Hugg CC Jr (1992) Anesthetic potency of the opioid GI 87084B in dogs. Anesthesiology 77:A368

    Article  Google Scholar 

  • Soma LR, Terney WJ, Hogan GK, Satoh N (1995) The effects of multiple administrations of sevoflurane to cynomolgus monkeys: clinical pathologic, hematologic and pathologic study. Anesth Analg 81:347–352

    CAS  PubMed  Google Scholar 

  • Steffey EP, Howland D (1978) Potency of enflurane in dogs: comparison with halothane and isoflurane. Am J Vet Res 39:573–577

    CAS  PubMed  Google Scholar 

  • Van Poznak A, Artusio F Jr (1960a) Anesthetic properties of a series of fluorinated compounds. I. Fluorinated hydrocarbons. Toxicol Appl Pharmacol 2:363–373

    Google Scholar 

  • Van Poznak A, Artusio F Jr (1960b) Anesthetic properties of a series of fluorinated compounds. II. Fluorinated ethers. Toxicol Appl Pharmacol 2:363–373

    Google Scholar 

  • White PF, Johnston RR, Eger EI II (1974) Determination of anesthetic requirement in rats. Anesthesiology 40:52–57

    Article  CAS  PubMed  Google Scholar 

  • Wolfson B, Kielar CM, Lake C, Hetrick WD, Siker ES (1973) Anesthetic index a new approach. Anesthesiology 38:583–586

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Jeanne Kallman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kallman, M.J. (2015). General Anesthetics. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation