Optical Networks

  • Chapter
  • First Online:
Fibre Optic Communication

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

  • 3255 Accesses

Abstract

After a compilation of the fundamentals of optical communication networks the chapter continues with technical arguments in favour of optical networks. Specific attention is given to financial barriers, which have to be overcome for the introduction of all-optical networks, in particular in the access area. Different options for optical access networks are explained, including the pros and cons for their implementation. Examples are point-to-point fibre solutions and various kinds of passive optical networks (PONs). The rest of the chapter covers metro and core networks and ends with an outlook on expected future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A learning curve is defined as the percentage decline in price of a product as the product volume doubles, an 80 % learning curve will mean that the price of a product at a volume \(V\) will decline to 80 % of that price at volume \(2V\). In this case the product is bandwidth.

References

  1. K.C. Kao, G.A. Hockham, Dielectric surface waveguides for optical frequencies. Proc. IEE 113, 1151–1158 (1966)

    Google Scholar 

  2. F.P. Kapron, D.B. Keck, R.D. Maurer, Radiation losses in glass optical waveguides. Appl. Phys. Lett. 17, 423–425 (1970)

    Article  ADS  Google Scholar 

  3. Zh.I. Alferov, V.M. Andreev, D.Z. Garbuzov, Yu.V. Zhilyaev, E.P. Morozov, E.L. Portnoi, V.G. Trofim, Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and realization of the continuous emission at room temperature. Sov. Phys. Semicond. 4, 1573–1575 (1970)

    Google Scholar 

  4. I. Hayashi, M.B. Panish, P.W. Foy, S. Sumski, Junction lasers which operate continuously at room temperature. Appl. Phys. Lett. 17, 109–111 (1970)

    Article  ADS  Google Scholar 

  5. R.J. Mears, L. Reekie, I.M. Jauncey, D.N. Payne, Low-noise erbium-doped fibre amplifier operating at 1.54 µm. Electron. Lett. 23, 1026–1028 (1987)

    Article  Google Scholar 

  6. G.P. Agrawal, Nonlinear Fibre Optics, 4th edn. (Academic Press, Burlington, USA, 2007)

    Google Scholar 

  7. S.P. Singh, R. Gangwar, N. Singh, Nonlinear scattering effects in optical fibers. Prog. Electromagn. Res. 74, 379–405 (2007)

    Article  Google Scholar 

  8. R.J. Stolen, Polarization effects in Raman and Brillouin lasers. IEEE J. Quantum Electron. QE-15, 1157–1160 (1979)

    Article  ADS  Google Scholar 

  9. P.B. Harboe, E. da Silva, J.R. Souza, Analysis of FWM penalties in DWDM systems based on G.652, G.653, and G.655 optical fibers, World Academy of Science. Engineering and Technology Issue 48, Article 13, 77–83 (2008)

    Google Scholar 

  10. R. Billington, A report on four-wave mixing in optical fibre and its metrological applications, National Physical Laboratory, NPL Report COEM 24, January 1999

    Google Scholar 

  11. W. Lehr, S. Gillett, A. Sirbu, Measuring broadband's economic impact, Broadband properties (December 2005), http://www.broadbandproperties.com

  12. America's technology future at risk: Broadband and investment strategies to refire innovation (Economic Strategy Institute, March 2006), http://www.econstrat.org/index.php?option=com_content&task=view&id=230&Itemid=5

  13. J. Halpern, G. Garceau, S. Thomas, Fibre: Revolutionizing the Bell's telecoms networks (2004) http://www.telcordia.com/products/fttp/bernstein_report.html

  14. The broadband incentive problem, http://cfp.mit.edu/docs/incentive-wp-sept2005.pdf

  15. D.B. Payne, R.P. Davey, The future of fibre access systems?. BT Technol. J. 20, 104–114 (2002)

    Article  Google Scholar 

  16. D.B. Payne, World bandwidth growth over the next decade – is it viable?, http://www.ciphotonics.com/Technical_papers/BandwidthGrowthInterWhiteP.doc.pdf

  17. L.G. Cuthbert, J.-C. Sapanel, ATM The Broadband Telecommunications Solution. IEE Telecommunications Series, vol. 29 (IEE, London, 1993). ISBN: 0-85296-815-9

    Google Scholar 

  18. D. Nesset, R. Davey, D. Shea, P. Kirkpatrick, S. Shang, M. Lobel, B. Christensen, 10 Gbit/s bidirectional transmission in 1024-way split, 110 km reach, PON system using commercial transceiver modules, super FEC and EDC, Proc. 31st Europ. Conf. Opt. Commun. (ECOC'05), Glasgow, UK (2005), paper Tu1.3.1

    Google Scholar 

  19. The Photonic Integrated Extended Metro and Access Network (PIEMAN) EU FP6 Project, http://www.ist-pieman.org/

  20. C. Antony, P. Ossieur, A.M. Clarke, A. Naughton, H.-G. Krimmel, Y.F. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D.W. Smith, D. Nesset, R.P. Davey, P.D. Townsend, Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124 km field-installed fibers, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), post-deadline paper PDPD8

    Google Scholar 

  21. P. Ossieur, C. Antony, A. Naughton, A. Clarke, P.D. Townsend, H.G. Krimmel, T. De Ridder, X.Z. Qiu, C. Melange, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D.W. Smith, A symmetric 320 Gbit/s capable, 100 km extended reach hybrid DWDM-TDMA PON, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), paper NWB1

    Google Scholar 

  22. Multi Service Access Everywhere (MUSE) EU FP6 Project, http://www.ist-muse.org/

  23. M. Rasztovits-Wiech, A. Stadler, S. Gianordoli, K. Kloppe, Is a 10/2.5 Gbit/s extra-large PON far from reality?, Proc. 9th Int. Conf. Transparent Opt. Netw. (ICTON 2007), Rome, 1–5 July, pp. 283–286, paper Th.B1.4

    Google Scholar 

  24. D. Nesset, D. Payne, R. Davey, T. Gilfedder, Demonstration of enhanced reach and split of a GPON system using semiconductor optical amplifiers, Proc. 32nd Europ. Conf. Opt. Commun. (ECOC'06), Cannes, France (2006), paper Mo4.5.1

    Google Scholar 

  25. A. Lord, M. Wade, Techno-economic issues in future telecom networks, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'07), Techn. Digest (Anaheim, CA, USA, 2007), paper OWK1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Payne Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Payne, D. (2012). Optical Networks. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20517-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20517-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20516-3

  • Online ISBN: 978-3-642-20517-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation