Nanotechnology-Based Drug Delivery Systems: Past, Present and Future

  • Chapter
  • First Online:
Nanotechnology: Applications in Energy, Drug and Food

Abstract

The methods involved in delivering drugs to target sites will have significant impact on the effectiveness of the drugs release. Absorption of high concentration of drugs have some toxicity effect meanwhile having low concentration may prove how low the therapeutic benefit the drugs hold, putting aside other various drawbacks. This chapter outlines how nanotechnology has developed some advance drug delivery system and how the development moves along throughout the years for a better future of medical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183

    Article  CAS  Google Scholar 

  • Afergan E, Epstein H, Dahan R, Koroukhov N, Rohekar K, Danenberg HD, Golomb G (2008) Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes. J Control Release 132:84–90

    Article  CAS  Google Scholar 

  • Albanell J, Baselga J (1999) Trastuzumab, a humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today (Barc) 35:931–946

    CAS  Google Scholar 

  • Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP (2012) Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 159(3):393–402

    Article  CAS  Google Scholar 

  • Caminade AM, Laurent R, Majoral JP (2005) Characterization of dendrimers. Adv Drug Deliv Rev 57:2130–2146

    Article  CAS  Google Scholar 

  • Czarnobaj K (2008) Preparation and characterization of silica xerogels as carriers for drugs. Drug Deliv 15:485–492

    Article  CAS  Google Scholar 

  • D’Emanuele A, Attwood D (2005) Dendrimer-drug interactions. Adv Drug Deliv Rev 57:2147–2162

    Article  Google Scholar 

  • Di Pasqua AJ, Wallner S, Kerwood DJ, Dabrowiak JC (2009) Adsorption of the Pt (II) anticancer drug carboplatin by mesoporous silica. Chem Biodivers 6:1343–1349

    Article  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev 6:688–701

    Article  CAS  Google Scholar 

  • Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237

    Article  CAS  Google Scholar 

  • Echeverria JC, Estella J, Barberia V, Musgo J, Garrido JJ (2010) Synthesis and characterization of ultra microporous silica xerogels. J Non-Cryst Solids 356:378–382

    Article  CAS  Google Scholar 

  • Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(3):11–16

    Article  CAS  Google Scholar 

  • Gonzalez-Aramundiz JV, Cordeiro AS, Csaba N, Fuente MDL, Alonso MJ (2012) Nanovaccines: nanocarriers for antigen delivery. Biol Aujourdhui 206(4):249–261

    Article  CAS  Google Scholar 

  • Huang Y-F, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, Tan W (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumour cells. ChemBioChem 10:862–868

    Article  CAS  Google Scholar 

  • Karra N, Benita S (2012) The ligand nanoparticle conjugation approach for targeted cancer therapy. Curr Drug Metab 13:1–20

    Article  Google Scholar 

  • Kim JK, Choi SH, Kim CO, Park JS, Ahn WS, Kim CK (2003) Enhancement of polyethylene glycol (PEG)-modified cationic liposome-mediated gene deliveries: effects on serum stability and transfection efficiency. J Pharm Pharmacol 55:453–460

    Article  CAS  Google Scholar 

  • Kitchens KM, Kolhatkar RB, Swaan PW, Eddington ND, Ghandehari H (2006) Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: Influence of size, charge and fluorescent labeling. Pharm Res 23(12):2818–2826

    Article  CAS  Google Scholar 

  • Kratz F, Warnecke A (2012) Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. J Control Release 164(2):221–235

    Article  CAS  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75:1–18

    Article  CAS  Google Scholar 

  • Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56:1273–1289

    Article  CAS  Google Scholar 

  • Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, Augst JT, Leong KW (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70:399–421

    Article  CAS  Google Scholar 

  • Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113:151–170

    Article  CAS  Google Scholar 

  • Muller RH, Radtke M, Wissing SA (2002) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242:121–128

    Article  CAS  Google Scholar 

  • Nevozhay D, Kanska U, Budzynska R, Boratynski J (2007) Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases. Postepy Hig Med Dosw 61:350–360

    Google Scholar 

  • Paavola A, Kilpelainen I, Yliruusi J, Rosenberg P (2000) Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. Int J Pharm 199(1):85–93

    Article  CAS  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  Google Scholar 

  • Re**old NS, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Biodegradable and thermo-sensitive chitosan-g-poly (N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr Polym 83:776–786

    Article  CAS  Google Scholar 

  • Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27

    Article  Google Scholar 

  • Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res 30:53–65

    Article  CAS  Google Scholar 

  • Ross KA, Brenza TM, Binnebose AM, Phanse Y, Kanthasamy AG, Gendelman HE, Salem AK, Bartholomay LC, Bellaire BH, Narasimhan B (2015) Nano-enabled delivery of diverse payloads across complex biological barriers. J Control Release 219:548–559

    Article  CAS  Google Scholar 

  • Safdar A, Ma J, Saliba F, Dupont B, Wingard JR, Hachem RY, Mattiuzzi GN, Chandrasekar PH, Kontoyiannis DP, Rolston KV, Walsh TJ, Champlin RE, Raad II (2010) Drug-induced nephrotoxicity caused by amphotericin B lipid complex and liposomal amphotericin B: a review and meta-analysis. Medicine 89(4):236–244

    Article  CAS  Google Scholar 

  • Santos Giuberti C, Oliveira Reis EC, Rocha TGR, Leite EA, Lacerda RG, Ramaldes GA, Oliveira MC (2011) Study of the pilot production process of long-circulating and pH-sensitive liposomes containing cisplatin. J Liposome Res 21(1):60–69

    Article  Google Scholar 

  • Shah N, Steptoe RJ, Parekh HS (2011) Low-generation asymmetric dendrimers exhibit minimal toxicity and effectively complex DANN. J Pept Sci 17:470–478

    Article  CAS  Google Scholar 

  • Singh P, Gupta U, Asthana A, Jain NK (2008) Folate and Folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 19:2239–2252

    Article  CAS  Google Scholar 

  • Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13:592–605

    Article  CAS  Google Scholar 

  • Steinmetz NF (2010) Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine 6:634–641

    Article  CAS  Google Scholar 

  • Sunderland CJ, Stejert M, Talmadge JE, Derfus AM, Barry SE (2006) Targeted nanoparticles for detecting and treating cancer. Drug Dev Res 67:70–93

    Article  CAS  Google Scholar 

  • Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2:16

    Article  Google Scholar 

  • Tong Q, Li H, Li W, Chen H, Shu X, Lu X, Wang G (2011) In vitro and in vivo anti-tumor effects of gemcitabine loaded with a new drug delivery system. J Nanosci Nanotechnol 11:3651–3658

    Article  CAS  Google Scholar 

  • Turkova A, Roilides E, Sharland M (2011) Amphotericin B in neonates: deoxycholate or lipid formulation as first-line therapy—is there a ‘right’ choice? Curr Opin Infect Dis 24:163–171

    Article  CAS  Google Scholar 

  • Uner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2(3):289–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Hu N, Zhang Y (2010) Synthesis of polymer-mesoporous silica nanocomposites. Materials 3:4066–4079

    Article  CAS  Google Scholar 

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037

    Article  CAS  Google Scholar 

  • Wilson A (2015) Nanovaccine delivery systems in vaccine formulations. SM Vaccine Vaccin J 1(2):1008

    Google Scholar 

  • Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272

    Article  CAS  Google Scholar 

  • Yeung CK, Shek SY, Yu CS, Kono T, Chan HH (2011) Liposome-encapsulated 0.5% 5-aminolevulinic acid with intense pulsed light for the treatment of inflammatory facial acne: a pilot study. Dermatol Surg 37:450–459

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awang Saman, R., Iqbal, M. (2019). Nanotechnology-Based Drug Delivery Systems: Past, Present and Future. In: Siddiquee, S., Melvin, G., Rahman, M. (eds) Nanotechnology: Applications in Energy, Drug and Food. Springer, Cham. https://doi.org/10.1007/978-3-319-99602-8_7

Download citation

Publish with us

Policies and ethics

Navigation