Fluctuations and Dynamics of Magnetic Nanoparticles

  • Chapter
  • First Online:
Atomic- and Nanoscale Magnetism

Part of the book series: NanoScience and Technology ((NANO))

  • 1260 Accesses

Abstract

The stability of magnetic moments in a nanostructure against thermal and quantum fluctuations and the real-time dynamics of strongly excited nanosystems on metallic surfaces are studied theoretically on the basis of microscopic models addressing the degrees of freedom on the atomic level. To this end, different theoretical approaches and computational tools are employed and developed, such as classical Monte-Carlo simulations, quantum-classical hybrid dynamics and time-dependent density-matrix renormalization group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Binder, Rep. Prog. Phys. 60, 487 (1997)

    Article  ADS  Google Scholar 

  2. S. Krause, G. Herzog, T. Stapelfeldt, L. Berbil-Baitusta, M. Bode, E.Y. Vedmedenko, R. Wiesendanger, Phys. Rev. Lett. 103, 127202 (2009)

    Google Scholar 

  3. E. Tsymbal, I. Zutic (eds.), Handbook of Spin Transport and Magnetism (Chapman and Hall/CRC, Florida, 2011)

    Google Scholar 

  4. L.D. Landau, E.M. Lifshitz, Physik. Zeits. Sowjetunion 8, 153 (1935)

    Google Scholar 

  5. T. Gilbert, Phys. Rev. 100, 1243 (1955); T. Gilbert, Magnetics, IEEE Trans. 40, 3443 (2004)

    Google Scholar 

  6. G. Tatara, H. Kohno, J. Shibata, Phys. Rep. 468, 213 (2008)

    Google Scholar 

  7. G. Bertotti, I.D. Mayergoyz, C. Serpico, Nonlinear Magnetization Dynamics in Nanosystemes (Elsevier, Amsterdam, 2009)

    Chapter  Google Scholar 

  8. B. Skubic, J. Hellsvik, L. Nordström, O. Eriksson, J. Phys.: Condens. Matter 20, 315203 (2008)

    Google Scholar 

  9. D. Marx, J. Hutter, Ab initio molecular dynamics: theory and implementation,in Modern Methods and Algorithms of Quantum Chemistry. NIC Series, Vol. 1, Ed. by J. Grotendorst, p. 301 (John von Neumann Institute for Computing, Jülich, 2000)

    Google Scholar 

  10. M. Sayad, M. Potthoff, New J. Phys. 17, 113058 (2015)

    Article  ADS  Google Scholar 

  11. M. Sayad, R. Rausch, M. Potthoff, Phys. Rev. Lett. 117, 127201 (2016)

    Google Scholar 

  12. M. Sayad, R. Rausch, M. Potthoff, Europhys. Lett. 116, 17001 (2016)

    Google Scholar 

  13. C. Stahl, M. Potthoff, Phys. Rev. Lett. 119, 227203 (2017).

    Google Scholar 

  14. M. Sayad, L.M. Woelk, R. Rausch, M. Potthoff, unpublished (2017)

    Google Scholar 

  15. M. Medvedyeva, A. Hoffmann, S. Kehrein, Phys. Rev. B 88, 094306 (2013)

    Article  ADS  Google Scholar 

  16. M. Nuss, M. Ganahl, E. Arrigoni, W. von der Linden, H.G. Evertz, Phys. Rev. B 91, 085127 (2015)

    Google Scholar 

  17. A. Sakuma, J. Phys. Soc. Jpn. 81, 084701 (2012)

    Article  ADS  Google Scholar 

  18. S. Bhattacharjee, L. Nordström, J. Fransson, Phys. Rev. Lett. 108, 057204 (2012)

    Google Scholar 

  19. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002)

    Google Scholar 

  20. J. Fransson, Nanotechnology 19, 285714 (2008)

    Article  Google Scholar 

  21. E.M. Hankiewicz, G. Vignale, Y. Tserkovnyak, Phys. Rev. B 78, 020404(R) (2008)

    Google Scholar 

  22. I. Garate, A. MacDonald, Phys. Rev. B 79, 064404 (2009)

    Google Scholar 

  23. K.M.D. Hals, K. Flensberg, M.S. Rudner, Phys. Rev. B 92, 094403 (2015)

    Google Scholar 

  24. M. Morgenstern, Science 329, 1609 (2010)

    Article  ADS  Google Scholar 

  25. S. Loth, M. Etzkorn, C.P. Lutz, D.M. Eigler, A.J. Heinrich, Science 329, 1628 (2010)

    Article  ADS  Google Scholar 

  26. A.A. Khajetoorians, J. Wiebe, B. Chilian, R. Wiesendanger, Science 332, 1062 (2011)

    Article  ADS  Google Scholar 

  27. F. Gebhard, The Mott Metal-Insulator Transition (Springer, Berlin, 1997)

    Google Scholar 

  28. J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963)

    Google Scholar 

  29. U. Schollwöck, Ann. Phys. (N.Y.) 326, 96 (2011)

    Google Scholar 

  30. J. Haegeman, J.I. Cirac, T.J. Osborne, I. Pižorn, H. Verschelde, F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)

    Google Scholar 

  31. J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, F. Verstraete, Phys. Rev. B 94, 165116 (2016)

    Google Scholar 

  32. L.N. Buleavskiǐ, Sov. J. Exp. Theor. Phys. 24, 154 (1967)

    Google Scholar 

  33. M. Moeckel, S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008)

    Google Scholar 

  34. M. Moeckel, S. Kehrein, New J. Phys. 12, 055016 (2010)

    Article  ADS  Google Scholar 

  35. M. Kollar, F.A. Wolf, M. Eckstein, Phys. Rev. B 84, 054304 (2011)

    Google Scholar 

  36. M. Marcuzzi, J. Marino, A. Gambassi, A. Silva, Phys. Rev. Lett. 111, 197203 (2013)

    Google Scholar 

  37. A. Rosch, D. Rasch, B. Binz, M. Vojta, Phys. Rev. Lett. 101, 265301 (2008)

    Google Scholar 

  38. N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, Phys. Rev. Lett. 104, 080401 (2010)

    Google Scholar 

  39. F. Hofmann, M. Potthoff, Phys. Rev. B 85, 205127 (2012)

    Google Scholar 

  40. R. Rausch, M. Potthoff, New J. Phys. 18, 023033 (2016)

    Article  ADS  Google Scholar 

  41. E. Vedmedenko, N. Mikuszeit, T. Stapelfeldt, R. Wieser, A.L.M. Potthoff, R. Wiesendanger, Eur. Phys. J. B 80, 331 (2011)

    Article  ADS  Google Scholar 

  42. O. Iglesias, A. Labarta, Phys. Rev. B 63, 184416 (2001)

    Google Scholar 

  43. A. Neumann, D. Altwein, C.T. En, R. Wieser, A. Berger, A. Meyer, E.Y. Vedmedenko, H.P. Oepen, New J. Phys. 16, 083012 (2014)

    Article  ADS  Google Scholar 

  44. M. Krizanac, E.Y. Vedmedenko, R. Wiesendanger, New J. Phys. 18, 033029 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Krizanac, E.Y. Vedmedenko, R. Wiesendanger, New J. Phys. 19, 013032 (2017)

    Article  ADS  Google Scholar 

  46. M.K. et al., J. Magn. Magn. Mater. 14, 53 (2009)

    Google Scholar 

  47. R. Wieser, E.Y. Vedmedenko, R. Wiesendanger, Phys. Rev. B 79, 144412 (2009)

    Google Scholar 

  48. R. Wieser, E.Y. Vedmedenko, P. Weinberger, R. Wiesendanger, Phys. Rev. B 82, 144430 (2010)

    Google Scholar 

  49. T. Yamaoka, K. Watanabe, Y. Shirakawabe, K. Chinone, E. Saitoh, H. Miyajima, Jpn. J. Appl. Phys. 45, 2230 (2006)

    Article  ADS  Google Scholar 

  50. T. Stapelfeldt, R. Wieser, E.Y. Vedmedenko, R. Wiesendanger, Phys. Rev. Lett. 107, 027203 (2011)

    Google Scholar 

  51. R. Wieser, E.Y. Vedmedenko, R. Wiesendanger, Phys. Rev. Lett. 106, 067204 (2011)

    Google Scholar 

  52. R. Wieser, T. Stapelfeldt, E.Y. Vedmedenko, R. Wiesendanger, Eur. Phys. Lett. 97, 17009 (2012)

    Google Scholar 

  53. P. Weinberger, E.Y. Vedmedenko, R. Wieser, R. Wiesendanger, Philoso. Magn. 91, 2248 (2011)

    Google Scholar 

  54. K. Them, E.Y. Vedmedenko, K. Fredenhagen, R. Wiesendanger, J. Phys. A: Math. Theor. 48, 075301 (2014)

    Google Scholar 

Download references

Acknowledgements

We would like to thank David Altwein, Mario Krizanac, Roman Rausch, Mohammad Sayad, Thim Stapelfeldt, Kolja Them, Robert Wieser for the intense and fruitful cooperation over the years. Financial support of this work by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 668 (project B3) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena Vedmedenko or Michael Potthoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vedmedenko, E., Potthoff, M. (2018). Fluctuations and Dynamics of Magnetic Nanoparticles. In: Wiesendanger, R. (eds) Atomic- and Nanoscale Magnetism. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99558-8_13

Download citation

Publish with us

Policies and ethics

Navigation