Heavy-Tailed Mutation Operators in Single-Objective Combinatorial Optimization

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

Abstract

A core feature of evolutionary algorithms is their mutation operator. Recently, much attention has been devoted to the study of mutation operators with dynamic and non-uniform mutation rates. Following up on this line of work, we propose a new mutation operator and analyze its performance on the (1+1) Evolutionary Algorithm (EA). Our analyses show that this mutation operator competes with pre-existing ones, when used by the (1+1) EA on classes of problems for which results on the other mutation operators are available. We present a “jump” function for which the performance of the (1+1) EA using any static uniform mutation and any restart strategy can be worse than the performance of the (1+1) EA using our mutation operator with no restarts. We show that the (1+1) EA using our mutation operator finds a (1/3)-approximation ratio on any non-negative submodular function in polynomial time. This performance matches that of combinatorial local search algorithms specifically designed to solve this problem.

Finally, we evaluate experimentally the performance of the (1+1) EA using our operator, on real-world graphs of different origins with up to \(\sim \)37 000 vertices and \(\sim \)1.6 million edges. In comparison with uniform mutation and a recently proposed dynamic scheme our operator comes out on top on these instances.

A full version of this paper is available at http://arxiv.org/abs/1805.10902.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source categories of the 67 instances: 2x bio-*, 6x ca-*, 5x ia-*, 2x inf-*, 1x soc-*, 40x socfb-*, 4x tech-*, 7x web-*. The largest graph is socfb-Texas84 with 36 364 vertices and 1 590 651 edges.

References

  1. Ageev, A.A., Sviridenko, M.: An 0.828-approximation algorithm for the uncapacitated facility location problem. Discrete Appl. Math. 93(2–3), 149–156 (1999)

    Article  MathSciNet  Google Scholar 

  2. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

    Article  Google Scholar 

  3. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: GECCO, pp. 777–784 (2017)

    Google Scholar 

  4. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoret. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  5. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

    Article  Google Scholar 

  6. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Natural Computing Series. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05094-1

    Book  MATH  Google Scholar 

  7. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  Google Scholar 

  8. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. Evol. Comput. 18(4), 617–633 (2010)

    Article  Google Scholar 

  9. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid constraints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015)

    Article  Google Scholar 

  10. Friedrich, T., Quinzan, F., Wagner, M.: Esca** large deceptive basins of attraction with heavy mutation operators. In: GECCO (2018, accepted). https://hpi.de/friedrich/docs/paper/GECCO18.pdf

  11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  12. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  Google Scholar 

  13. Jansen, T., Wegener, I.: Real royal road functions-where crossover provably is essential. Discrete Appl. Math. 149(1–3), 111–125 (2005)

    Article  MathSciNet  Google Scholar 

  14. Krause, A., Guestrin, C.: Near-optimal observation selection using submodular functions. In: AAAI, pp. 1650–1654 (2007)

    Google Scholar 

  15. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: STOC, pp. 323–332 (2009)

    Google Scholar 

  16. Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55(2), 270–296 (2006)

    Article  MathSciNet  Google Scholar 

  17. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: PPSN, pp. 15–26 (1992)

    Google Scholar 

  18. Rossi, R.A., Ahmed, N.K.: The Network Data Repository with Interactive Graph Analytics and Visualization (Website) (2015). http://networkrepository.com

  19. Wagner, M., Friedrich, T., Lindauer, M.: Improving local search in a minimum vertex cover solver for classes of networks. In: CEC, pp. 1704–1711 (2017)

    Google Scholar 

  20. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_6

    Chapter  Google Scholar 

  21. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 44–56. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9_4

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Martin Krejca for giving his advice on one of the proofs, and Karen Seidel for proof-reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Göbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Friedrich, T., Göbel, A., Quinzan, F., Wagner, M. (2018). Heavy-Tailed Mutation Operators in Single-Objective Combinatorial Optimization. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation