Smart Metering Technology

  • Chapter
  • First Online:
Microgrids Design and Implementation

Abstract

Over the last few years, the need for electricity has increased in households as new and different appliances are progressively introduced. This increased demand for electricity raises a concern to many developed and develo** countries since it is a human’s responsibility to assure a sustainable future. Energy demand management can be an effective approach to reduce the energy consumption; this approach requires final consumers to be empowered with more information for improving their decision-making and actions on the energy usage through increased awareness. Therefore, metering and behind the meter monitoring systems have a crucial role in the exploitation of this potential in the customer side.

A significant disadvantage of traditional meters is the fact that they do not provide detailed information to the customers, which is achieved with the help of smart meters. A smart meter allows the customers to have access to the information about electricity consumption of the appliances in their houses. The acceptance of smart meters by customers is the fundamental step to achieve the potential carbon emission reductions that are provided by the use of advanced metering infrastructures.

The smart meter is an advanced energy meter that measures consumption of electrical energy such as a traditional meter but also provides additional information in real time, making it the key element of the new energy demand management system. Integration of smart meters into electricity grids implies the implementation of several technologies, depending on the features that each situation request. The design of a smart meter has been in constant development since it is increasingly necessary to satisfy both the requirements of the utility company and those of the customer. Therefore, smart metering provides benefits to the energy utilities optimizing their business, and beyond that it can provide advantages to the final customers.

All over the world many smart metering projects have been developed. However, it is still not entirely clear which are the associated costs, the characteristics, and the mechanisms internal to projects that bring advantages and benefits for the different concerned parties. The smart metering methods and the communication technologies used in smart grid are being substantially studied due to widespread applications of smart grid. The monitoring and control processes are largely used in industrial systems. Nevertheless, the energy management requirements at service supplier and customer promoted the evolution of smart grid and consequently the development of microgrids.

This chapter discusses various characteristics and technologies that can be integrated with a smart meter for smart grids and microgrids uses. In fact, placement of smart meters needs proper selection and implementation of a communication network fulfilling the security standards of smart grid/microgrid communication. This chapter outlines various issues and challenges involved in design, deployment, utilization, and maintenance of the smart metering infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.watthourmeters.com/history.html. Retrieved November 19, 2016.

  2. Regassa, B., Medina, A., Gómez, I., Rivera, O., Gómez, J., Liñán, M., Flores, J., González, J., Langer, J., Bellido, F., & Moreno-Munñoz, A. (2012). Upgrading of traditional electric meter into wireless electric meter using ZigBee technology. In Book IT Revolutions: Third International ICST Conference, Córdoba, Spain (pp. 84–94), March 23–25, 2011, Revised Selected Papers. Berlin: Springer.

    Google Scholar 

  3. Alez, G. (2012). Electricity meters: units of measurement, electromechanical meters, in-home energy use displays, smart meters, and more. Webster’s Digital Services.

    Google Scholar 

  4. Lascelles, D., & Adonis, A. (1995, April 8). Highways into your home: The coming revolution in domestic technology. The Financial Times, p. III.

    Google Scholar 

  5. Marvin, S., Chappels, H., & Guy, S. (1999). Pathways of smart metering development: Sha** environmental innovation. Computers, Environment and Urban Systems, 23(2), 109–126.

    Article  Google Scholar 

  6. Cosmo, V. D., Lyons, S., & Nolan, A. (2012). Estimating the impact of time-of-use pricing on Irish electricity demand. Economic and Social Research Institute, Dublin, Ireland, Working paper.

    Google Scholar 

  7. Commission for Energy Regulation. (2011). Electricity smart metering customer behaviour trials findings report (ref. CER11080b). Dublin, Commission for Energy Regulation.

    Google Scholar 

  8. Commission for Energy Regulation. (2011). Smart Metering Information Paper 4, Results of electricity cost-benefit analysis, customer behaviour trials and technology trials (ref. CER11080). Dublin, Commission for Energy Regulation.

    Google Scholar 

  9. AlAbdulkarim, L., & Lukszo, Z. (2009). Smart metering for the future energy systems in the Netherlands. Proceedings of CRIS 2009 - Fourth International Conference on Critical Infrastructures (pp. 1–7).

    Google Scholar 

  10. Deb, S., Bhowmik P., & Paul A. (2011). Remote detection of illegal electricity usage employing smart energy meter - a current based technique. IEEE PES Innovative Smart Grid Technologies -India (pp. 391–395).

    Google Scholar 

  11. Mohassel, R., Fung, A., Mohammadi, F., & Raahemifar, K. (2014). Application of advanced metering infrastructure in smart grids. Proceedings of 22nd Mediterranean Conference on Control and Automation (MED), Palermo (pp. 822–828).

    Google Scholar 

  12. Silicon Laboratories, Inc. Smart metering brings intelligence and connectivity to utilities, green energy and natural resource management. Rev.1.0. Retrieved November 26, 2016, from http://www.silabs.com/support%20documents/technicaldocs/designing-low-power-metering-applications.pdf

  13. International Energy Outlook 2016. (2016). DOE/EIA-0484(2016). I May.

    Google Scholar 

  14. Darby, S. (2010). Smart metering: What potential for householder engagement? Building Research and Information, 38(5), 442–457.

    Article  Google Scholar 

  15. Guerini, F. (2014, April). How does a smart Metering Project Work? Interpretation of twelve European cases. Master Thesis, Politecnico di Milano, Italy.

    Google Scholar 

  16. Chebbo, M. (2007). EU smart grids framework: Electricity networks of the future 2020 and beyond. Proceedings of IEEE Power Engineering Society General Meeting, Tampa, USA (pp. 1–8).

    Google Scholar 

  17. Depuru, S., Wang, I., & Devabhaktuni, V. (2011). Smart meters for power grid: Challenges, issues, advantages and status. Renewable and Sustainable Energy Reviews, 15(6), 2736–2742.

    Article  Google Scholar 

  18. Vojdani, A. (2008). Smart integration. IEEE Power and Energy Magazine, 6(6), 71–79.

    Article  Google Scholar 

  19. Hart, D. (2008). Using AMI to realize the smart grid. In Proceedings of IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st century, Pittsburgh, USA (pp. 1–2).

    Google Scholar 

  20. Gerwen, R., Jaarsma, S., & Wilhite, R. (2006). Smart metering - briefing paper. In Leonardo Energy (pp. 1–9). Arnhem: Gelderland, The Netherlands. http://paginas.fe.up.pt/~ee04012/smart%20metering_Rob Gerwen.pdf

  21. Depuru, S., Wang, L., & Devabhaktuni, V. (2010). A conceptual design using harmonics to reduce pilfering of electricity. In Proceedings IEEE Power and Energy Society General Meeting (pp. 1–7).

    Google Scholar 

  22. Cleveland, F. (2008). Cyber security issues for advanced metering infrastructure. In Proceedings of IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st century, Pittsburgh, USA (pp. 1–5).

    Google Scholar 

  23. Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart grid – the new and improved power grid: A survey. IEEE Communication Surveys and Tutorials, 14(4), 944–980.

    Article  Google Scholar 

  24. Cecati, C., Citro, C., Picollo, A., & Siano, P. (2011). Smart operation of wind turbines and diesel generators according to economic criteria. IEEE Transactions on Industrial Electronics, 58(10), 4514–4525.

    Article  Google Scholar 

  25. DeBlasio, R., & Tom, C. (2008). Standards for the smart grid. In Proceedings of the IEEE Energy 2030 Conference (ENERGY 2008) (pp.1–7), Abu Dhabi.

    Google Scholar 

  26. Kolhe, M. (2012). Smart grid: charting a new energy future: research, development and demonstration. The Electricity Journal, 25(2), 88–93.

    Article  Google Scholar 

  27. Chun-Hao, L., & Ansari, N. (2012). The progressive Smart Grid System from both power and communications aspects. IEEE Communication Surveys and Tutorials, 14(3), 799–821.

    Google Scholar 

  28. Collier, S. (2010). Ten steps to a smarter grid. IEEE Industry Applications Magazine, 16(2), 62–68.

    Article  Google Scholar 

  29. Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36(12), 4419–4426.

    Article  Google Scholar 

  30. North American Electric Reliability Corporation (NERC). (2007, December). Data collection for demand-side management for quantifying its influence on reliability – results and recommendations. Retrieved December 18, 2017, from http://www.nerc.com/files/demand-response.pdf

  31. Alvarez, C., Gabaldón, A., & Molina, A. (2004). Assessment and simulation of the responsive demand potential in end-user facilities: Application to a university customer. IEEE Transactions on Power Systems, 19(2), 1223–1231.

    Article  Google Scholar 

  32. Brooks, A., Lu, E., Reicher, D., Spirakis, C., & Weihl, B. (2010). Demand dispatch. IEEE Power and Energy Magazine, 8(3), 20–29.

    Article  Google Scholar 

  33. Vandoorn, T., Vasquez, J., De Kooning, J., Guerrero, J., & Vandevelde, L. (2013). Microgrids: Hierarchical control and an overview of the control and reserve management strategies. IEEE Industrial Electronics Magazine, 7(4), 42–55.

    Article  Google Scholar 

  34. ADDRESS Project Deliverable 1.1. (2009, October). ADDRESS Technical and Commercial Conceptual Architectures. Retrieved December 18, 2017, from http://www.addressfp7.org/config/files/ADD-WP1_Technical_and-Commercial_Architectures.pdf

  35. ADDRESS Project Deliverable 2.1. (2011, May). Algorithms for aggregators, customers and for their equipment which enables active demand. Retrieved December 18, 2017, from http://www.addressfp7.org/config/files/ADD-WP2-D2.1-Algorithms%20for%20Aggregator_Ebox.pdf

  36. Schweppe, F., Tabors, R., Kirtley, J., Outhred, H., Pickel, F., & Cox, A. (1980). Homeostatic utility control. IEEE Transactions on Power Apparatus and Systems, PAS-99(3), 1151–1163.

    Article  Google Scholar 

  37. Hammerstrom, D., Pratt, R., Carlon, T., Oliver, T., & Marek, W. (2007, October). Pacific Northwest GridWise Testbed Demonstration Projects: Part II. Grid Friendly Appliance Project. Pacific Northwest National Lab. Retrieved December 18, 2017, from https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-17079.pdf

  38. Molina-Garciá, A., Bouffard, F., & Kirschen, S. (2011). Decentralized demand-side contribution to primary frequency control. IEEE Transactions on Power Systems, 26(1), 411–419.

    Article  Google Scholar 

  39. Samarakoon, K., Ekanayake, J., & Jenkins, N. (2012). Investigation of domestic load control to provide primary frequency response using smart meters. IEEE Transactions on Smart Grid, 3(1), 282–292.

    Article  Google Scholar 

  40. Pourmousavi, S., & Nehrir, M. (2012). Real-time central demand response for primary frequency regulation in microgrids. IEEE Transactions on Smart Grid, 3(4), 1988–1996.

    Article  Google Scholar 

  41. Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: motivations, requirements and challenges. IEEE Communication Surveys and Tutorials, 15(1), 5–20.

    Article  Google Scholar 

  42. Yang, Y., Yin, Y., & Hu, Z. (2015). MAC protocols design for smart metering network. Automation, Control and Intelligent Systems, 3(5), 87–94.

    Article  Google Scholar 

  43. Mohassel, R., Fung, A., Mohammadi, F., & Raahemifar, K. (2014). A survey on advanced metering infrastructure. International Journal of Electrical Power & Energy Systems, 63, 473–484.

    Article  Google Scholar 

  44. Yang, Z., Chen, Y. X., Li, Y. F., Zio, E., & Kang, R. (2014). Smart electricity meter reliability prediction based on accelerated degradation testing and modeling. International Journal of Electrical Power & Energy Systems, 56, 209–219.

    Article  Google Scholar 

  45. Sadinezhad, I., & Agelidis, V. G. (2011). Slow sampling on-line harmonics/Interharmonics estimation technique for smart meters. Electric Power Systems Research, 81(8), 1643–1653.

    Article  Google Scholar 

  46. Li, H., Mao, R., Lai, L., & Qiu, R. C. (2010). Compressed meter reading for delay-sensitive and secure load report in smart grid. In Proceedings of the IEEE Smart Grid Communications’10, Maryland, USA (pp. 114–119).

    Google Scholar 

  47. Yaacoub, E., & Abu-Dayya, A. (2014). Automatic meter reading in the smart grid using contention based random access over the free cellular spectrum. Computer Networks, 59, 171–183.

    Article  Google Scholar 

  48. Bat-Erdene, B., Lee, B., Kim, M. Y., Ahn, T. H., & Kim, D. (2013). Extended smart meters-based remote detection method for illegal electricity usage. IET Generation Transmission and Distribution, 7(11), 1332–1343.

    Article  Google Scholar 

  49. Cho, H. S., Yamazaki, T., & Hahn, M. (2009). Determining location of appliances from multi-hop tree structures of power strip type smart meters. IEEE Transactions on Consumer Electronics, 55(4), 2314–2322.

    Article  Google Scholar 

  50. Zhou, J., Hu, R. Q., & Qian, Y. (2012). Scalable distributed communication architectures to support advanced metering infrastructure. IEEE Transactions on Parallel and Distributed Systems, 23(9), 1632–1642.

    Article  Google Scholar 

  51. Berthier, R., Sanders, W. H., Khurana, H. (2010). Intrusion detection for advanced metering infrastructures: Requirements and architectural directions. In Proceedings of the IEEE Smart Grid Communications’10, Maryland, USA (pp. 350–355).

    Google Scholar 

  52. Shein, R. (2010). Security measures for advanced metering infrastructure components. In Proceedings of Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific, Chengdu (pp. 1–3).

    Google Scholar 

  53. Faisal, M. A., Aung, Z., Williams, J., & Sanchez, A. (2012). Securing advanced metering infrastructure using intrusion detection system with data stream mining. In Proceedings of PAISI'12, 2012 Pacific Asia conference on Intelligence and Security Informatics, Kuala Lumpur, Malaysia (pp 96–111).

    Google Scholar 

  54. Le, T. N., Chin, W. L., Troung, D. K., & Nguyen, T. H. (2016). Advanced metering infrastructure based on smart meters in smart grid. In M. Eissa (Ed.), Smart metering technology and services – inspirations for energy utilities. London: InTech.

    Google Scholar 

  55. **ang, W., St-Hilaire, M., & Kunz, T. (2011). Roadmap of future smart grid, smart home, and smart appliances. Carleton University, Ottawa, Canada. Retrieved November 18, 2016, from http://www.csit.carleton.ca/~msthilaire/Tech_Report/2011-SmartGridRoadMap.pdf

  56. Lipošcak, Z., & Boškovic, M. (2013). Survey of smart metering communication technologies. In Proceedings of EUROCON, 2013 IEEE, Zagreb, Croatia (pp. 1391–1400).

    Google Scholar 

  57. Kabalci, E., Kabalci, Y., & Develi, I. (2012). Modelling and analysis of a power line communication system with QPSK modem for renewable smart grids. International Journal of Electrical Power & Energy Systems, 34(1), 19–28.

    Article  Google Scholar 

  58. Parikh, PP., Kanabar, MG., & Sidhu, TS. (2010). Opportunities and challenges of wireless communication technologies for smart grid applications. In Proceedings of the Power and Energy Society General Meeting, Minneapolis, USA (pp. 1–7).

    Google Scholar 

  59. Khan, R. H., & Khan, J. Y. (2011). A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Computer Networks, 57(3), 825–845.

    Article  Google Scholar 

  60. Wang, W., Xu, Y., & Khanna, M. (2011). A survey on the communication architectures in smart grid. Computer Networks, 55(15), 3604–3629.

    Article  Google Scholar 

  61. Lu, X., Wang, W., & Ma, J. (2013). An empirical study of communication infrastructures towards the smart grid: Design, implementation, and evaluation. IEEE Transactions on Smart Grid, 4(1), 170–183.

    Article  Google Scholar 

  62. Kuzlu, M., Pipattanasomporn, M., & Rahman, S. (2014). Communication network requirements for major smart grid applications in HAN, NAN and WAN. Computer Networks, 67, 74–88.

    Article  Google Scholar 

  63. Usman, A., & Shami, S. (2013). Evolution of communication technologies for smart grid applications. Renewable and Sustainable Energy Reviews, 19, 191–199.

    Article  Google Scholar 

  64. Ancillotti, E., Bruno, R., & Conti, M. (2013). The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Computer Communications, 36, 1665–1697.

    Article  Google Scholar 

  65. Energy Networks Association. (2012). Pilots and trials report on smart metering and related matters. Retrieved November 24, 2016 http://www.aemc.gov.au/getattachment/6a455547-4851-4a86-b83c-385be12f967d/Energy-Networks-Association-Pilots-and-trials-repo.aspx

  66. Saputro, N., Akkaya, K., & Uludag, S. (2012). A survey of routing protocols for smart grid communications. Computer Networks, 56(11), 2742–2771.

    Article  Google Scholar 

  67. Lazarus, B. N. (2013). Smart grid enabled and enhanced by broadband powerline. In Proceedings of ENERGY 2013, the Third International Conference on Smart Grids, Green Communications and IT Energy-Aware Technologies, Lisbon, Portugal (pp. 77–83).

    Google Scholar 

  68. Galli, S., & Lys, T. (2015). Next generation Narrowband (under 500 kHz) Power Line Communications (PLC) standards. China Communications, 12(3), 1–8.

    Article  Google Scholar 

  69. Galli, S., Scaglione, A., & Wang, Z. (2011). For the grid and through the grid: The role of Power line communications in the smart grid. Proceedings of the IEEE, 99(6), 998–1027.

    Article  Google Scholar 

  70. Brown, J., & Khan, J. Y. (2013). Key performance aspects of an LTE FDD based smart grid communications network. Computer Communications, 36(5), 551–561.

    Article  Google Scholar 

  71. Rahman, M. M., Hong, C., Lee, S., Lee, J., Razzaque, M. A., & Kim, J. (2011). Medium access control for power line communications: An overview of the IEEE 1901 and ITU-TG.hn standards. IEEE Communications Magazine, 49(6), 183–191.

    Article  Google Scholar 

  72. Gungor, V., Sahin, D., Kocak, T., Ergut, S., Bucella, C., Cecati, C., & Hancke, G. (2012). Smart Grid and Smart Homes: Key players & pilot projects. IEEE Industrial Electronics Magazine, 6(4), 18–34.

    Article  Google Scholar 

  73. Kaur, M., & Kalra, S. (2016). A review on IOT based smart grid. International Journal of Energy, Information and Communications, 7(3), 11–22.

    Article  Google Scholar 

  74. Liu, S., Liu, X. P., & Saddik, A. (2014). Modeling and distributed gain scheduling strategy for load frequency control in smart grids with communication topology changes. ISA Transactions, 53(2), 454–461.

    Article  Google Scholar 

  75. Xu, Y., & Wang, W. (2013). Wireless mesh network in smart grid: Modeling and analysis for time critical communications. IEEE Transactions on Wireless Communications, 12(7), 3360–3371.

    Article  Google Scholar 

  76. Zhu, Z., Lambotharan, S., Chin, W., & Fan, Z. (2012). Overview of demand management in smart grid and enabling wireless communication technologies. IEEE Wireless Communications, 19(3), 48–56.

    Article  Google Scholar 

  77. Ma, R., Chen, H., Huang, Y., & Meng, W. (2013). Smart grid communication: Its challenges and opportunities. IEEE Transactions on Smart Grid, 4(1), 36–46.

    Article  Google Scholar 

  78. Luan, S., Teng, J., Chan, S., & Hwang, L. (2009). Development of a smart power meter for AMI based on zigbee communication. In Proceedings of 2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei (pp. 661–665).

    Google Scholar 

  79. Reid, B. (2009). Oncor electric delivery smart grid initiative. In Proceedings of 62nd Annual Conference for Protective Relay Engineers Austin, TX, USA (pp. 8–15).

    Google Scholar 

  80. Luan, W., Sharp, D., & Lancashire, S. (2010). Smart grid communication network capacity planning for power utilities. In Proceedings of IEEE PES T &D 2010, New Orleans, LA, USA (pp. 1–4).

    Google Scholar 

  81. Accenture. (2014). The role of communication technology in Europe’s advanced metering infrastructure. Technical paper. Retrieved November 24, 2016, from https://www.accenture.com/t20150523T042354__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries_15/Accenture-Role-Communication-Technology-Europes-Advanced-Metering-Infrastructure.pdf

  82. Cuvelier, P., & Sommereyns, P. (2009). Proof of concept smart metering. In Proceedings of 20th International Conference and Exhibition on Electricity Distribution (pp. 1–4).

    Google Scholar 

  83. The Commission for Energy Regulation. (2011). Electricity Smart Metering Technology Trials Findings Report. Retrieved October 26, 2016, from https://www.ucd.ie/t4cms/Electricity%20Smart%20Metering%20Technology%20Trials%20Findings%20Report.pdf

  84. Edison Electric Institute. (2011). Smart meters and smart meter systems: A metering industry perspective. Retrieved October 18, 2016, from http://www.eei.org/issuesandpolicy/grid-enhancements/documents/smartmeters.pdf

  85. Gungor, V., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. (2011). Smart grid technologies: Communications technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 529–539.

    Article  Google Scholar 

  86. Kabalci, Y. (2016). A survey on smart metering and smart grid communication. Renewable and Sustainable Energy Reviews, 57, 302–318.

    Article  Google Scholar 

  87. Han, D., & Lim, J. (2010). Smart home energy management system using IEEE 802.15.4 and zigbee. IEEE Transactions on Consumer Electronics, 56(3), 1403–1410.

    Article  Google Scholar 

  88. Bennett, C., & Highfill, D. (2008). Networking AMI smart meters. In Proceedings of IEEE Energy 2030 Conference, Atlanta, Georgia, USA (pp. 1–8).

    Google Scholar 

  89. IEEE 802.15 Wireless Personal Area Networks. Retrieved November 2, 2016, from https://standards.ieee.org/about/get/802/802.15.html

  90. Lu, B., & Gungor, V. (2009). Online and remote motor energy monitoring and fault diagnostics for industrial motor systems using wireless sensor networks. IEEE Transactions on Industrial Electronics, 56(11), 4651–4659.

    Article  Google Scholar 

  91. Cisco. (2014). A standardized and flexible IPv6 architecture for field area networks. White Paper. Retrieved November 15, 2016, from https://www.cisco.com/web/strategy/docs/energy/ip_arch_sg_wp.pdf

  92. Koay, B., Cheah, S., Sng, Y., Chong, P., Shum, P., Tong, Y., Wang, X., Zuo, Y., & Kuek, H. (2004). Design and implementation of Bluetooth energy meter. In Proceedings of the Fourth International Conference on Information, Communications & Signal Processing, Singapore (pp. 1474–1477).

    Google Scholar 

  93. IEEE 802.11™ Wireless LANs. Retrieved November 2, 2016, from http://standards.ieee.org/about/get/802/802.11.html

  94. Wang, H., Qian, Y., & Sharif, H. (2013). Multimedia communications over cognitive radio Networks for smart grid applications. IEEE Wireless Communications, 20(4), 125–132.

    Article  Google Scholar 

  95. Kulkarni, P., Gormus, S., Fan, Z., & Motz, B. (2012). A mesh-radio-based solution for smart metering networks. IEEE Communications Magazine, 50(7), 86–95.

    Article  Google Scholar 

  96. Niyato, D., & Wang, P. (2012). Cooperative transmission for meter data collection in smart grid. IEEE Communications Magazine, 50(4), 90–97.

    Article  Google Scholar 

  97. Su, H., Qiu, M., & Wang, H. (2012). Secure wireless communication system for smart grid with rechargeable electric vehicles. IEEE Communications Magazine, 50(8), 62–68.

    Article  Google Scholar 

  98. Gentile, C., Griffith, D., & Souryal, M. (2012). Wireless network deployment in the smart grid: Design and evaluation issues. IEEE Network, 26(6), 48–53.

    Article  Google Scholar 

  99. The Advanced Security Acceleration Project. (2010, June). Security profile for advanced metering infrastructure. AMI-Sec Task Force, TN, Tech. Rep. Retrieved November 2, 2016, from http://osgug.ucaiug.org/utilisec/amisec/Shared%20Documents/AMI%20Security%20Profile%20(ASAP-SG)/AMI%20Security%20Profile%20-%20v2_0.pdf

  100. Kalogridis, G., Sooriyabandara, M., Fan, Z., & Mustafa, M. (2014). Toward unified security and privacy protection for smart meter networks. IEEE Systems Journal, 8(2), 641–654.

    Article  Google Scholar 

  101. Wigan, M. (2014). User issues for smart meter technology. IEEE Technology and Society Magazine, 33(1), 49–53.

    Article  Google Scholar 

  102. Erkin, Z., Troncoso-Pastoriza, J., Lagendijk, R., & Perez-Gonzalez, F. (2013). Privacy-preserving data aggregation in smart metering systems: an overview. IEEE Signal Processing Magazine, 30(2), 75–86.

    Article  Google Scholar 

  103. Tan, O., Gunduz, D., & Poor, H. V. (2013). Increasing smart meter privacy through energy harvesting and storage devices. IEEE Journal on Selected Areas in Communications, 31(7), 1331–1341.

    Article  Google Scholar 

  104. Garcia, F., & Jacobs, B. (2010). Privacy-friendly energy-metering via homomorphic encryption. In Proceedings of the 6th conference on security and trust management (STM’10), Athens, Greece (pp. 226–238).

    Google Scholar 

  105. Danezis, G., Kohlweiss, M., & Rial, A. (2011). Differentially private billing with rebates. In Proceedings of the Information Hiding Conference (LNCS), Prague, Czech Republic (pp. 148–162).

    Google Scholar 

  106. Jawurek, M., Johns, M., & Kerschbaum, F. (2011). Plug-in privacy for smart metering billing. In Proceedings of 11th Privacy Enhancing Technologies Symposium (PETS), Waterloo, Canada, (pp. 192–210).

    Google Scholar 

  107. Beye, M., Erkin, Z., & Lagendijk, R. (2011). Efficient privacy preserving k-means clustering in a three-party setting. In Proceedings of the IEEE International Workshop on Information Forensic and Security (WIFS), Iguacu Falls, Brazil (pp. 1–6).

    Google Scholar 

  108. Rial, A., & Danezis, G. (2011). Privacy-preserving smart metering. In Proceedings of the 10th Annual ACM workshop on privacy in the electronic society (WPES'11), New York (pp. 49–60).

    Google Scholar 

  109. Wan, Z., Wang, G., Yang, Y., & Shi, S. (2014). SKM: Scalable key management for advanced metering infrastructure in smart grids. IEEE Transactions on Industrial Electronics, 61(12), 7055–7066.

    Article  Google Scholar 

  110. Bou-Harb, E., Fachkha, C., Pourzandi, M., Debbabi, M., & Assi, C. (2013). Communication security for smart grid distribution networks. IEEE Communications Magazine, 51(1), 42–49.

    Article  Google Scholar 

  111. Ross, K., Hopkinson, K., & Pachter, M. (2013). Using a distributed agent-based communication enabled special protection system to enhance smart grid security. IEEE Transactions on Smart Grid, 4(2), 1216–1224.

    Article  Google Scholar 

  112. Hahn, A., Ashok, A., Sridhar, S., & Govindarasu, M. (2013). Cyber–physical security testbeds: architecture, application, and evaluation for smart grid. IEEE Transactions on Smart Grid, 4(2), 847–855.

    Article  Google Scholar 

  113. Mo, Y., Kim, T., Brancik, K., Dickinson, D., Lee, H., Perrig, A., & Sinopoli, B. (2012). Cyber–physical security of a smart grid infrastructure. Proceedings of the IEEE, 100(1), 195–209.

    Article  Google Scholar 

  114. Ericsson, G. (2010). Cyber security and power system communication – essential parts of a smart grid infrastructure. IEEE Transactions on Power Delivery, 25(3), 1501–1507.

    Article  Google Scholar 

  115. Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2012). A survey on cyber security for smart grid communications. IEEE Communication Surveys and Tutorials, 14(4), 998–1010.

    Article  Google Scholar 

  116. Khurana, H., Hadley, M., Lu, N., & Frincke, D. (2010). Smart-grid security issues. IEEE Security and Privacy, 8(1), 81–85.

    Article  Google Scholar 

  117. Wang, W., & Lu, Z. (2013). Cyber security in the smart grid: Survey and challenges. Computer Networks, 57(5), 1344–1371.

    Article  Google Scholar 

  118. McDaniel, P., & McLaughlin, S. (2009). Security and privacy challenges in the smart grid. IEEE Security and Privacy, 7(3), 75–77.

    Article  Google Scholar 

  119. Metke, A., & Ekl, R. (2010). Security technology for smart grid networks. IEEE Transactions on Smart Grid, 1(1), 99–107.

    Article  Google Scholar 

  120. Nordell, D. (2012). Terms of protection: The many faces of smart grid security. IEEE Power and Energy Magazine, 10(1), 18–23.

    Article  Google Scholar 

  121. Lee, E., Gerla, M., & Oh, S. (2012). Physical layer security in wireless smart grid. IEEE Communications Magazine, 50(8), 46–52.

    Article  Google Scholar 

  122. Finster, S., & Baumgart, I. (2014). Privacy-aware smart metering: a survey. IEEE Communication Surveys and Tutorials, 16(3), 1732–1745.

    Article  Google Scholar 

  123. Qiu, M., Su, H., Chen, M., Ming, Z., & Yang, L. (2012). Balance of security strength and energy for a PMU monitoring system in smart grid. IEEE Communications Magazine, 50(5), 142–149.

    Article  Google Scholar 

  124. Li, X., Liang, X., Lu, R., Shen, X., Lin, X., & Zhu, H. (2012). Securing smart grid: cyber-attacks, countermeasures, and challenges. IEEE Communications Magazine, 50(8), 38–45.

    Article  Google Scholar 

  125. Hu, B., & Gharavi, H. (2014). Smart grid mesh network security using dynamic key distribution with merkle tree 4-way handshaking. IEEE Transactions on Smart Grid, 5(2), 550–558.

    Article  Google Scholar 

  126. Liu, J., **ao, Y., Li, S., Liang, W., & Chen, C. (2012). Cyber security and privacy issues in smart grids. IEEE Communication Surveys and Tutorials, 14(4), 981–997.

    Article  Google Scholar 

  127. Yan, Y., Hu, R., Das, S., Sharif, H., & Qian, Y. (2013). An efficient security protocol for advanced metering infrastructure in smart grid. IEEE Network, 27(4), 64–71.

    Article  Google Scholar 

  128. **a, J., & Wang, Y. (2012). Secure key distribution for the smart grid. IEEE Transactions on Smart Grid, 3(3), 1437–1443.

    Article  Google Scholar 

  129. Murrill, B., Liu, E., & Thompson II, R. (2012). Smart meter data: privacy and cyber security. Congres. Res. Serv., USA (pp. 1–45). Retrieved November 5, 2016, from https://fas.org/sgp/crs/misc/R42338.pdf

  130. Kalogridis, G., Efthymiou, C., Denic, S., Lewis, T., & Cepeda, R. (2010). Privacy for smart meters: towards undetectable appliance load signatures. In Proceedings of IEEE International Conference on Smart Grid Communications, Gaithersburg, MD (pp. 232–237).

    Google Scholar 

  131. Pfitzmann, A., & Hansen, M. (2010). A terminology for talking about privacy by data minimization: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management. Retrieved November 11, 2016, from http://dud.inf.tu-dresden.de/Anon_Terminology.shtml

  132. Cheng, J., & Kunz, T. (2009). A survey on smart home networking. Technical Report SCE-09-10, Carleton University. Retrieved November 10, 2016, from https://cs.uwaterloo.ca/~brecht/courses/856-802.11-Network-Performance-2014/readings/home-networking/smart-home-networking-survey.pdf

  133. Ghassemi, A., Bavarian, S., & Lampe, L. (2010). Cognitive radio for smart grid communications. In Proceedings of First IEEE International Conference on Smart Grid Communications (SmartGrid Comm); Gaithersburg, MD (pp. 297–302).

    Google Scholar 

  134. Wang, J., Ghosh, M., & Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine, 49(3), 74–81.

    Article  Google Scholar 

  135. Vineeta, T. J. (2012). Cognitive radio communication architecture in smart grid reconfigurability. In Proceedings of 1st International Conference on Emerging Technology Trends in Electronics, Communication and Networking (ET2ECN), Surat, Gujarat, India (pp. 1–6).

    Google Scholar 

  136. Han, Y., Wang, J., Zhao, Q., & Han, P. (2012). Cognitive information communication network for smart grid. In Proceedings of IEEE International Conference on Information Science and Technology (ICIST), Wuhan, Hubei, China (pp. 847–850).

    Google Scholar 

  137. Li, B., Zhang, B., Guo, J., & Yao, J. (2012). Study on cognitive radio based wireless access communication of power line and substation monitoring system of smart grid. In Proceedings of International Conference on Computer Science and Service System (CSSS), Nan**g (pp. 1146–1149).

    Google Scholar 

  138. Nagothu, K., Kelley, B., Jamshidi, M., & Rajaee, A. (2012). Persistent Net-AMI for microgrid infrastructure using cognitive radio on cloud data centers. IEEE Systems Journal, 6(1), 4–15.

    Article  Google Scholar 

  139. Aijaz, A., Su, H., & Aghvami, A. H. (2015). CORPL: a routing protocol for cognitive radio enabled AMI networks. IEEE Transactions on Smart Grid, 6(1), 477–485.

    Article  Google Scholar 

  140. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J. P., & Alexander, R. (2012). IPv6 routing protocol for low-power and lossy networks. Internet Engineering Task Force, RFC 6550. Retrieved November 7, 2016, from https://www.rfc-editor.org/rfc/pdfrfc/rfc6550.txt.pdf

  141. Chang, S., Nagothu, K., Kelley, B., & Jamshidi, M. (2014). A beamforming approach to smart grid systems based on cloud cognitive radio. IEEE Systems Journal, 8(2), 461–470.

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Portuguese Foundation for Science and Technology (FCT) and by PIDDAC, under the research projects “ERANETLAC/0006/2014” and “ERANETLAC/0005/2014.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Coelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coelho, P., Gomes, M., Moreira, C. (2019). Smart Metering Technology. In: Zambroni de Souza, A., Castilla, M. (eds) Microgrids Design and Implementation. Springer, Cham. https://doi.org/10.1007/978-3-319-98687-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98687-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98686-9

  • Online ISBN: 978-3-319-98687-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation