Siamese Network Based Features Fusion for Adaptive Visual Tracking

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11012))

Included in the following conference series:

Abstract

Visual object tracking is a popular but challenging problem in computer vision. The main challenge is the lack of priori knowledge of the tracking target, which may be only supervised of a bounding box given in the first frame. Besides, the tracking suffers from many influences as scale variations, deformations, partial occlusions and motion blur, etc. To solve such a challenging problem, a suitable tracking framework is demanded to adopt different tracking scenes. This paper presents a novel approach for robust visual object tracking by multiple features fusion in the Siamese Network. Hand-crafted appearance features and CNN features are combined to mutually compensate for their shortages and enhance the advantages. The proposed network is processed as follows. Firstly, different features are extracted from the tracking frames. Secondly, the extracted features are employed via Correlation Filter respectively to learn corresponding templates, which are used to generate response maps respectively. And finally, the multiple response maps are fused to get a better response map, which can help to locate the target location more accurately. Comprehensive experiments are conducted on three benchmarks: Temple-Color, OTB50 and UAV123. Experimental results demonstrate that the proposed approach achieves state-of-the-art performance on these benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/needniming/SNBFF.

References

  1. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust L1 tracker using accelerated proximal gradient approach. In: CVPR (2012)

    Google Scholar 

  2. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.: Staple: complementary learners for real-time tracking. In: CVPR (2016)

    Google Scholar 

  3. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  4. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: CVPR (2010)

    Google Scholar 

  5. Chen, K., Tao, W.: Once for all: a two-flow convolutional neural network for visual tracking. TCSVT PP(99), 1 (2017)

    Google Scholar 

  6. Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: BMVC (2014)

    Google Scholar 

  7. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking. PAMI 39(8), 1561–1575 (2017)

    Article  Google Scholar 

  8. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Convolutional features for correlation filter based visual tracking. In: ICCV Workshops (2015)

    Google Scholar 

  9. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: CVPR (2015)

    Google Scholar 

  10. Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29

    Chapter  Google Scholar 

  11. Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: CVPR (2014)

    Google Scholar 

  12. Gao, J., Ling, H., Hu, W., **ng, J.: Transfer learning based visual tracking with Gaussian processes regression. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 188–203. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_13

    Chapter  Google Scholar 

  13. Hare, S., et al.: Struck: structured output tracking with kernels. PAMI 38(10), 2096–2109 (2016)

    Article  Google Scholar 

  14. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 749–765. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_45

    Chapter  Google Scholar 

  15. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50

    Chapter  Google Scholar 

  16. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. PAMI 37(3), 583–596 (2015)

    Article  Google Scholar 

  17. Huang, D., Luo, L., Wen, M., Chen, Z., Zhang, C.: Enable scale and aspect ratio adaptability in visual tracking with detection proposals. In: BMVC (2015)

    Google Scholar 

  18. Leal-Taixé, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: Siamese CNN for robust target association. In: CVPR Workshops (2016)

    Google Scholar 

  19. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18

    Chapter  Google Scholar 

  20. Liang, P., Blasch, E., Ling, H.: Encoding color information for visual tracking: algorithms and benchmark. TIP 24(12), 5630–5644 (2015)

    MathSciNet  Google Scholar 

  21. Liu, B., Huang, J., Kulikowski, C., Yang, L.: Robust visual tracking using local sparse appearance model and K-selection. PAMI 35(12), 2968–2981 (2013)

    Article  Google Scholar 

  22. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: ICCV (2015)

    Google Scholar 

  23. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27

    Chapter  Google Scholar 

  24. Possegger, H., Mauthner, T., Bischof, H.: In defense of color-based model-free tracking. In: CVPR (2015)

    Google Scholar 

  25. Sevilla-Lara, L., Learned-Miller, E.: Distribution fields for tracking. In: CVPR (2012)

    Google Scholar 

  26. Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In: CVPR (2016)

    Google Scholar 

  27. Valmadre, J., Bertinetto, L., Henriques, J.F., Vedaldi, A., Torr, P.H.: End-to-end representation learning for correlation filter based tracking. In: CVPR (2017)

    Google Scholar 

  28. Wang, N., Yeung, D.Y.: Ensemble-based tracking: aggregating crowdsourced structured time series data. In: ICML (2014)

    Google Scholar 

  29. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR (2013)

    Google Scholar 

  30. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. PAMI 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  31. Zhang, J., Ma, S., Sclaroff, S.: MEEM: robust tracking via multiple experts using entropy minimization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 188–203. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_13

    Chapter  Google Scholar 

  32. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_62

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Natural Science Foundation of Zhejiang Province (LQ18F030013, LQ18F030014, LQ16F030007) and Innovation Foundation from Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education (JYB201706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, D., Zhao, W., Cui, Y., Wang, Z., Chen, S., Zhang, J. (2018). Siamese Network Based Features Fusion for Adaptive Visual Tracking. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97304-3_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97303-6

  • Online ISBN: 978-3-319-97304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation