Mid-Infrared Molecular Sensing

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

Mid-infrared (MIR) sensing has wide applicability for detecting molecular solids, liquids, solutions and gases. This chapter reviews how guided waves in MIR-transmitting chalcogenide glass fibers, waveguides and resonators are showing promise for compact, portable and real-time molecular sensing with potential use across many sectors, such as in medicine, security, the environment, agriculture, pharmaceuticals and in manufacturing and chemical processing. New bright, MIR supercontinuum laser sources have been demonstrated both in chalcogenide glass fiber and on-chip for wideband MIR molecular sensing. Also, bright rare earth-doped chalcogenide glass fiber photoluminescence () is being harnessed in PL-absorption narrow-band MIR molecular sensing. Many designs of chalcogenide glass sensor heads realized for evanescent field detection of molecules both in fiber and on-chip are described in this chapter. Also, processing of chalcogenide glasses pertinent to application in MIR molecular sensing devices is presented. The necessary background to MIR optical sensing is given, showing how it can be quantitative, of high contrast, fast and with high sensitivity and specificity. The data processing required to interpret MIR molecular sensing is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • W. Herschel: Experiments on the refrangibility of the invisible rays of the sun, Philos. Trans. R. Soc. Lond. 90, 284–292 (1800)

    Article  Google Scholar 

  • BSI ISO 20473:2007: Optics and photonics. Spectral bands (BSI, ISO Geneva 2007) checked 2015, BSI. p. 10

    Google Scholar 

  • J.H. Savage: Infrared Optical Materials and Their Antireflection Coatings (Adam Hilger, Bristol 1985), Fig. 1.1. p. 2

    Google Scholar 

  • A.B. Seddon: Biomedical applications in probing deep tissue using mid-infrared (MIR) supercontinuum optical biopsy. In: Deep Imaging in Tissue and Tissue-Like Media with Linear and Nonlinear Optics, ed. by R.R. Alfano, L. Shi (Pan Stanford, New York 2017)

    Google Scholar 

  • P.W. France, M.G. Drexhage, J.M. Parker, M.W. Moore, S.F. Carter, J.V. Wright: Fluoride Glass Optical Fibres (Blackie, London 1990)

    Book  Google Scholar 

  • J. Shephard, W. MacPherson, R. Maier, J. Jones, D. Hand, M. Mohebbi, A. George, P. Roberts, J. Knight: Single-mode mid-IR guidance in a hollow-core photonic crystal fibre, Opt. Express 13(18), 7139–7144 (2005)

    Article  CAS  Google Scholar 

  • J.S. Sanghera, L.B. Shaw, L.E. Busse, V.Q. Nguyen, P.C. Pureza, B.C. Cole, B.B. Harbison, I.D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, R. Miklos: Development and infrared applications of chalcogenide glass optical fibres, Fibre Integr. Opt. 19(3), 251–274 (2000)

    Article  CAS  Google Scholar 

  • J.S. Sanghera, L.B. Shaw, I.D. Aggarwal: Chalcogenide glass-fiber-based mid-IR sources and applications, IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009)

    Article  CAS  Google Scholar 

  • A.B. Seddon: Chalcogenide glasses: A review of their preparation, properties and applications, J. Non-Cryst. Solids 184, 44–50 (1995)

    Article  CAS  Google Scholar 

  • D. Lezal: Chalcogenide Glasses – Survey and Progress, Optoelectron. Adv. Mater. 5, 23–34 (2003)

    CAS  Google Scholar 

  • M.J. Pilling, A. Henderson, B. Bird, M.D. Brown, N.W. Clark, P. Gardner: High-throughput quantum cascade laser (QCL) spectral histopathology: A practical approach towards clinical translation, Faraday Discuss. 187, 135–154 (2016)

    Article  CAS  Google Scholar 

  • C.R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T.M. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A.B. Seddon, O. Bang: Mid-infrared supercontinuum covering 1.4–13.3 \({\upmu}\)m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nat. Photonics 8, 830–834 (2014)

    Article  CAS  Google Scholar 

  • G. Steinmeyer, J.S. Skibina: Entering the mid-infrared: The demonstration of chalcogenide fiber-based supercontinuum sources that reach beyond a wavelength of ten micrometres is set to have a major impact on spectroscopy and molecular sensing, Nat. Photonics 8, 814–815 (2014)

    Article  CAS  Google Scholar 

  • B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies: High brightness 2.2–12 \({\upmu}\)m mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber, J. Am. Ceram. Soc. 99(8), 2565–2568 (2016)

    Article  CAS  Google Scholar 

  • Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S.J. Madden, B. Luther-Davies: A broadband, quasi-continuous, MIR supercontinuum generated in a chalcogenide glass waveguide, Laser Photonics Rev. 8(5), 792–798 (2014)

    Article  CAS  Google Scholar 

  • F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, V. Nazabal: Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers, Sens. Actuators B 207, 518–525 (2015)

    Article  CAS  Google Scholar 

  • J. Schneider: Fluoride fiber laser operating at 3.9 \({\upmu}\)m, Electron. Lett. 31(15), 1250–1251 (1995)

    Article  CAS  Google Scholar 

  • L. Sojka, Z. Tang, D. Furniss, H. Sakr, Y. Fang, E. Beres-Pawlik, T.M. Benson, A.B. Seddon, S. Sujecki: Mid-infrared emission in Tb3+-doped selenide glass fiber, J. Opt. Soc. Am. B 34(3), A70–A79 (2017)

    Article  CAS  Google Scholar 

  • A.B. Seddon, Z. Tang, D. Furniss, S. Sujecki, T.M. Benson: Progress in rare-earth-doped mid-infrared fiber lasers, Opt. Express 18(25), 26704–26719 (2010)

    Article  Google Scholar 

  • N. Jayakrupakar, G.R. Lloyd, N. Shepherd, N. Stone: High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features, Analyst 141, 630–639 (2016)

    Article  CAS  Google Scholar 

  • A.B. Seddon: A prospective for new mid-infrared medical endoscopy using chalcogenide glasses, Int. J. Appl. Glass Sci. 2(3), 177–191 (2011)

    Article  CAS  Google Scholar 

  • A.B. Seddon: Mid-infrared (IR) – A hot topic, the potential for using mid-IR light for non-invasive, early detection of skin cancers in vivo, Phys. Status Solidi (b) 250(5), 1020–1027 (2013)

    Article  CAS  Google Scholar 

  • R. Li, D. Furniss, H. Bagshaw, A.B. Seddon: The decisive role of oxide content on the formation and crystallization of gallium-lanthanum-sulphide glasses, J. Mater. Res. 14(6), 1–6 (1999)

    Google Scholar 

  • J.-L. Adam, X. Zhang (Eds.): Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead, Oxford 2013)

    Google Scholar 

  • J. Sanghera, I. Aggarwal (Eds.): Infrared Fiber Optics (CRC, Boca Raton 1998)

    Google Scholar 

  • G.E. Snopatin, V.S. Shiryaev, V.G. Plotnichenko, E.M. Dianov, M.F. Churbanov: High-purity chalcogenide glasses for fiber optics, Inorg. Mater. 45(13), 1439–1460 (2009)

    Article  CAS  Google Scholar 

  • A.B. Seddon, S.N.B. Hodgson, M.G. Scott: Sol-gel approach to preparing germanium disulphide, J. Mater. Sci. 26, 2599–2602 (1991)

    Article  CAS  Google Scholar 

  • C.C. Huang, D.W. Hewak, J.V. Badding: Deposition and characterization of germanium sulphide glass planar waveguides, Opt. Express 12(11), 2501–2506 (2004)

    Article  CAS  Google Scholar 

  • Y. Zha, P.T. Lin, L. Kimerling, A. Agarwal, C.B. Arnold: Inverted-rib chalcogenide waveguides by solution process, ACS Photonics 1, 153–157 (2014)

    Article  CAS  Google Scholar 

  • N. Prasad, D. Furniss, H.L. Rowe, C.A. Miller, D.H. Gregory, A.B. Seddon: First time microwave synthesis of As40Se60 chalcogenide glass, J. Non-Cryst. Solids 356(41/42), 2134–2145 (2010)

    Article  CAS  Google Scholar 

  • L.A. Mochalov, A.S. Lobanov, A.V. Nezhdanov, A.I. Mashin, M.A. Kudryashov, A.V. Strikovskiy, A.V. Kostrov, A.V. Vorotyntsev, V.M. Vorotyntsev: Influence of the preparation technique on the optical properties and content of heterophase inclusions of As2S3 chalcogenide glasses, Opt. Mater. Express 6(11), 3507–3517 (2016)

    Article  CAS  Google Scholar 

  • H. Rawson: Properties and Applications of Glass (Elsevier, Amsterdam 1980)

    Google Scholar 

  • D. Furniss, A.B. Seddon: Thermal analysis of inorganic compound glasses and glass-ceramics. In: Principles and Applications of Thermal Analysis, ed. by P. Gabbott (Blackwells, Oxford 2007)

    Google Scholar 

  • S.D. Savage, C.A. Miller, D. Furniss, A.B. Seddon: Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers, J. Non-Cryst. Solids 354(29), 3418–3427 (2008)

    Article  CAS  Google Scholar 

  • C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Trole, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J.-L. Adam, J. Lucas: Chalcogenide step index and microstructured single mode fibers, J. Non-Cryst. Solids 357, 2480–2483 (2011)

    Article  CAS  Google Scholar 

  • T. Miya, Y. Terunuma, T. Hosaka, T. Mujashita: Ultimate low loss single mode fiber at 1.55 \({\upmu}\)m, Electron. Lett. 15(4), 106–108 (1979)

    Article  CAS  Google Scholar 

  • J.S. Sanghera, V.Q. Nguyen, P.C. Pureza, R.E. Milos, F.H. Kung, I.D. Aggarwal: Fabrication of long lengths of low loss transmitting As40S60−xSex glass fibers, J. Lightwave Technol. 14(5), 743–748 (1996)

    Article  CAS  Google Scholar 

  • M.S. Makiad, R.K. Mohr, R.E. Howard, P.B. Macedo, C.T. Moynihan: Multiphonon absorption in As2S3-As2Se3 glasses, Solid State Commun. 15, 855–858 (1974)

    Article  Google Scholar 

  • G.E. Snopatin, M.F. Churbanov, A.A. Pushkin, V.V. Gerasimenko, E.M. Dianov, V.G. Plotnichenko: High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km, Optoelectron. Adv. Mater. 3(7), 669–671 (2009)

    CAS  Google Scholar 

  • Z. Tang, V.S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T.M. Benson, A.B. Seddon, M.F. Churbanov: Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics, Opt. Mater. Express 5(8), 1722–1737 (2015)

    Article  CAS  Google Scholar 

  • G.G. Devyatykh, E.M. Dianov, V.G. Plotnichenko, I.V. Skripachev, M.F. Churbanov: Fiber waveguides based on high purity glasses, High Purity Subst. 5, 1–27 (1991)

    Google Scholar 

  • J. Troles, V. Shriyaev, M.F. Churbanov, P. Houizot, L. Brilland, F. Désévêdavy, F. Charpentier, T. Pain, G. Snopatin, J.-L. Adam: GeSe4 glass fibers with low optical losses in the mid-IR, Opt. Mater. 32(1), 212–215 (2009)

    Article  CAS  Google Scholar 

  • V.S. Shiryaev, J.-L. Adam, X.H. Zhang, C. Boussard-Plédel, J. Lucas, M.F. Churbanov: Infrared fibers based on Te-As-Se glass system with low optical losses, J. Non-Cryst. Solids 336(2), 113–119 (2004)

    Article  CAS  Google Scholar 

  • F. Désévêdavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, J.-L. Adam: Small-core chalcogenide microstructure fibers for the infrared, Appl. Opt. 47(32), 6014–6021 (2008)

    Article  Google Scholar 

  • M.F. Churbanov, V.S. Shiryaev, A.I. Suchkov, A.A. Pushkin, V.V. Gerasimenko, R.M. Shaposhnikov, E.M. Dianov, V.G. Plotnichenko, V.V. Koltashev, Y.N. Pyrkov, J. Lucas, J.-L. Adam: High-purity As-S-Se and As-Se-Te glasses and optical fibers, Inorg. Mater. 43(4), 441–447 (2007)

    Article  CAS  Google Scholar 

  • J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Désévêdavy, P. Houizot: Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single mode fiber at 1.55 \({\upmu}\)m, Mater. Res. Bull. 43(4), 976–982 (2008)

    Article  CAS  Google Scholar 

  • S. Sanghera, V.Q. Nguyen, P.C. Pureza, F.H. Kung, R. Miklos, I.D. Aggarwal: Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers, J. Lightwave Technol. 12(5), 737–741 (1994)

    Article  CAS  Google Scholar 

  • A.B. Seddon, N.S. Abdel-Moneim, L. Zhang, W.J. Pan, D. Furniss, C.J. Mellor, T. Kohoutek, J. Orava, T. Wagner, T.M. Benson: MIR integrated optics: Versatile hot embossing of MIR glasses for on-chip planar waveguides for molecular sensing, Opt. Eng. 53(7), 0718241–0718249 (2014), https://doi.org/10.1117/1.OE.53.7.071824

    Article  CAS  Google Scholar 

  • R. Todorov, K. Petkov: Light induced changes in the optical properties of thin As–S–Ge(Bi,Tl) films, J. Optoelectron. Adv. Mater. 3(12), 311–317 (2001)

    CAS  Google Scholar 

  • V.K. Tikhomirov, D. Furniss, A.B. Seddon, J.A. Savage, P.D. Mason, D.A. Orchard, K.L. Lewis: Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibers, Infrared Phys. Technol. 45, 115–123 (2004)

    Article  CAS  Google Scholar 

  • H.G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A.B. Seddon, I. Kubat, O. Bang, T.M. Benson: Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation, Opt. Mater. Express 4(7), 1444–1455 (2014)

    Article  CAS  Google Scholar 

  • I. Kubat, C.S. Agger, U. Møller, A.B. Seddon, Z.Q. Tang, S. Sujecki, T.M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P.M. Moselund, O. Bang: Mid-infrared supercontinuum generation to 12.5 \({\upmu}\)m in large NA chalcogenide step-index fibers pumped at 4.5 \({\upmu}\)m, Opt. Express 22(16), 19169–19182 (2014)

    Article  Google Scholar 

  • A. Zackery, S.R. Elliott: Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences, Vol. 135 (Springer, New York 2007)

    Google Scholar 

  • D. Eiseberg, W. Kauzmann: Structure and Properties of Water (Oxford Univ. Press, London 1969) p. 7

    Google Scholar 

  • C.N. Banwell: Fundamentals of Molecular Spectroscopy (McGraw-Hill, London 1966)

    Google Scholar 

  • M.J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H.J. Butler, K.M. Dorling, P.R. Fielden, S.W. Fogarty, N.J. Fullwood, K.A. Heys, C. Hughes, P. Lasch, P.L. Martin-Hirsch, B. Obinaju, G.D. Sockalingum, J. Sulé-Suso, R.J. Strong, M.J. Walsh, B.R. Wood, P. Gardner, F.L. Martin: Using Fourier transform IR spectroscopy to analyze biological materials, Nat. Protoc. 9(8), 1771–1791 (2014)

    Article  CAS  Google Scholar 

  • A.G. Lalkhen, A. McCluskey: Clinical tests: Sensitivity and specificity, Continuing Educ. Anaesth. Crit. Care Pain 8(6), 221–223 (2008)

    Article  Google Scholar 

  • D.G. Altman, J.M. Bland: Diagnostic tests 1: Sensitivity and specificity, BMJ 308, 1552 (1994)

    Article  CAS  Google Scholar 

  • Y.-C. Chang, P. Wagli, V. Paeder, A. Homsy, L. Hvozdara, P. Van der Wal, J. Di Francesco, N.F. de Rooij, H.P. Herzig: Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip, Lab Chip 12, 3020–3023 (2012)

    Article  CAS  Google Scholar 

  • C.K.N. Patel: www.pranalytica.com (accessed September 2016)

  • C.K.N. Patel: Recent progress in MWIR and LWIR quantum cascade lasers. In: SPIE Secur. Def. Edinburgh 2016, ed. by D. Titterton (SPIE, Bellingham 2016)

    Google Scholar 

  • AUTHOR: www.daylightsolutions.com (accessed September 2016)

  • B. Guo, Y. Wang, C. Peng, H.L. Zhang, G.P. Luo, H.Q. Le, C. Gmachl, D.L. Sivco, M.L. Peabody, A.Y. Cho: Laser-based mid-infrared reflectance imaging of biological tissues, Opt. Express 12(1), 208–218 (2004)

    Article  Google Scholar 

  • J.S. Sanghera, I.D. Aggarwal, L.B. Shaw, L.E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, F. Kung: Application of chalcogenide glass optical fibers at NRL, J. Optoelectron. Adv. Mater. 3(3), 627–640 (2001)

    CAS  Google Scholar 

  • G.S. Athanasiou, J. Ernst, D. Furniss, T.M. Benson, J. Chauhan, J. Middleton, C. Parmenter, M. Fay, N. Neate, V. Shiryaev, M.F. Churbanov, A.B. Seddon: Toward mid-infrared, subdiffraction, spectral-map** of human cells and tissue: SNIM (Scanning Near-Field Infrared Microscopy), J. Lightwave Technol. 34(4), 1212–1219 (2016)

    Article  CAS  Google Scholar 

  • P.J. Melling: Announcement at ISNOG (International Symposium on Non-Oxide Glasses and New Optical Glasses), early 1990s

    Google Scholar 

  • P.J. Melling: Fiber-optic probes for mid-infrared spectrometry. In: Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, Chichester 2002)

    Google Scholar 

  • J.R. Berard, R.J. Burger, P.J. Melling, W.R. Moser: Optical fiber coupled devices for remote spectroscopy in the infrared, US Patent 5170056 (1992)

    Google Scholar 

  • P. Lucas, M.R. Riley, C. Boussard-Plédel, B. Bureau: Review: Advances in chalcogenide fiber evanescent wave biochemical sensing, Anal. Biochem. 351, 1–10 (2006)

    Article  CAS  Google Scholar 

  • P. Lucas, M.A. Solis, D. Le Coq, C. Juncker, M.R. Riley, J. Collier, D.E. Boesewetter, C. Boussard-Plédel, B. Bureau: Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells, Sens. Actuators B 119, 355–362 (2006)

    Article  CAS  Google Scholar 

  • P. Lucas, A.A. Wilhelm, M. Videa, C. Boussard-Plédel, B. Bureau: Chemical stability of chalcogenide infrared glass fibers, Corros. Sci. 50, 2047–2052 (2008)

    Article  CAS  Google Scholar 

  • P. Houizot, M.-L. Anne, C. Boussard-Plédel, O. Loréal, H. Tariel, J. Lucas, B. Bureau: Sha** of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing, Sensors 14, 17905–17914 (2014)

    Article  CAS  Google Scholar 

  • J.-D. Albert, V. Monbet, A. Jolivet-Gougeon, N. Fatih, M. Le Corvec, M. Seck, F. Charpentier, G. Coiffier, C. Boussard-Plédel, B. Bureau, P. Guggenbuhl, O. Loréal: A novel method for a fast diagnosis of septic arthritis using mid infrared and deported spectroscopy, Joint Bone Spine 83, 318–323 (2016)

    Article  CAS  Google Scholar 

  • M. LeCorvec, F. Charpentier, A. Kachenoura, S. Bensaid, S. Henno, E. Bardou-Jacquet, B. Turlin, V. Monbet, L. Senhadji, O. Loréal, O. Sire, J.F. Betagne, H. Tariel, F. Lainé: Fast and non-invasive medical diagnostic using mid infrared sensor: The AMNIFIR Project, IRBM 37, 116–123 (2016)

    Article  Google Scholar 

  • M.L. Anne, E. Le Gal La Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H.L. Ma, X.H. Zhang, J.-L. Adam: Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy, Sens. Actuators B 137, 687–691 (2009)

    Article  CAS  Google Scholar 

  • F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. Michel-Le Pierrès, F. Smektala, J.-L. Adam: Infrared monitoring of underground CO2 storage using chalcogenide glass fibers, Opt. Mater. 31, 496–500 (2009)

    Article  CAS  Google Scholar 

  • Z. Tang, D. Furniss, M. Fay, H. Sakr, Ł. Sójka, N. Neate, N. Weston, S. Sujecki, T.M. Benson, A.B. Seddon: Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass, Opt. Mater. Express 5(4), 870–886 (2015)

    Article  CAS  Google Scholar 

  • H. Sakr, D. Furniss, Z. Tang, Ł. Sójka, N.A. Moneim, E. Barney, T.M. Benson, A.B. Seddon: Superior photoluminescence (PL) of Pr3+-In compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber, Opt. Express 22(18), 21236–21252 (2014)

    Article  CAS  Google Scholar 

  • Ł. Sójka, Z.Q. Tang, D. Furniss, H. Sakr, Y. Fang, E. Beres-Pawlick, T.M. Benson, A.B. Seddon, S. Sujecki: Mid-infrared emission in Tb3+-doped selenide glass fiber, J. Opt. Soc. Am. B 34(3), A70–A79 (2017)

    Article  CAS  Google Scholar 

  • A.B. Seddon, D. Furniss, Z.Q. Tang, Ł. Sójka, T.M. Benson, R. Caspary, S. Sujecki: True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass. In: Proc. 18th IEEE Int. Conf. Transpar. Opt. Netw. (2016), https://doi.org/10.1109/ICTON.2016.7550709

    Chapter  Google Scholar 

  • F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, V. Nazabal: IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems, Int. J. Greenh. Gas Control 55, 36–41 (2016)

    Article  CAS  Google Scholar 

  • R. Chahala, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, V. Nazabal: Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers, Sens. Actuators B 229, 209–216 (2016)

    Article  CAS  Google Scholar 

  • R.R. Alfano, S.L. Shapiro: Emission in the region 4000 to 7000 Å via four-photon coupling in glass, Phys. Rev. Lett. 24, 584–587 (1970)

    Article  CAS  Google Scholar 

  • P.S.J. Russell: Photonic-crystal fibers, J. Lightwave Technol. 24(12), 4729–4749 (2006)

    Article  Google Scholar 

  • L.B. Shaw, R.R. Gattass, J. Sanghera, I. Aggarwal: All fiber mid-IR supercontinuum source from 1.5 to 5 \({\upmu}\)m, Proc. SPIE 7924, 24 (2011)

    Google Scholar 

  • C. Agger, I. Kubat, U. Møller, P.M. Moselund, C.R. Petersen, B. Napier, A.B. Seddon, S. Sujecki, T.M. Benson, M. Farries, J. Ward, S. Lamrini, K. Scholle, P. Fuhrberg, O. Bang: Numerical demonstration of 3–12 \({\upmu}\)m supercontinuum generation in large-core step-index chalcogenide fibers pumped at 4.5 \({\upmu}\)m, Nonlinear Opt. (2013), https://doi.org/10.1364/NLO.2013.NW4A.09

    Article  Google Scholar 

  • Amorphous Materials Inc.: Chalcogenide glasses, http://www.amorphousmaterials.com/products/ (accessed 2017)

  • Personal communication from J.S. Sanghera (2006)

    Google Scholar 

  • J.-P. Guin, T. Rouxel, J.-C. Sangleboeuf: Hardness, toughness and scratchability of germanium-selenium chalcogenide glasses, J. Am. Ceram. Soc. 85(6), 1545–1552 (2002)

    Article  CAS  Google Scholar 

  • P. Toupin, L. Brilland, D. Méchin, J.-L. Adam, J. Troles: Optical aging of chalcogenide microstructured optical fibers, J. Lightwave Technol. 32(13), 2428–2432 (2014)

    Article  CAS  Google Scholar 

  • Z.G. Lian, Q.Q. Li, D. Furniss, T.M. Benson, A.B. Seddon: Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions, IEEE Photonics Lett. 21(24), 1804–1806 (2009)

    Article  CAS  Google Scholar 

  • Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.Y. Choi, S. Madden, B. Luther-Davies: 1.8–10 \({\upmu}\)m mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power, Opt. Lett. 40(6), 1081–1084 (2015)

    Article  CAS  Google Scholar 

  • U. Møller, Y. Yu, I. Kubat, C.R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, O. Bang: Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber, Opt. Express 23(3), 3282–3291 (2015)

    Article  CAS  Google Scholar 

  • R.R. Gattass, B.L. Shaw, V.Q. Nguyen, P.C. Pureza, I.D. Aggarwal, J.S. Sanghera: All-fiber chalcogenide-based mid-infrared supercontinuum source, Opt. Fiber Technol. 18, 345–348 (2012)

    Article  CAS  Google Scholar 

  • A.B. Seddon, B. Napier, I. Lindsay, S. Lamrini, P.M. Moselund, N. Stone, O. Bang: Mid-infrared spectroscopy/bioimaging: Moving toward MIR optical biopsy, Laser Focus World 52(2), 50–53 (2016)

    CAS  Google Scholar 

  • A.B. Seddon: Mid-infrared (MIR) Photonics: MIR passive and active fiberoptics for chemical and biomedical, sensing and imaging. In: SPIE Secur. Def. Edinburgh (SPIE, Bellingham 2016)

    Google Scholar 

  • European Commission: MINERVA: MId- to NEaR-infrared spectroscopy for improVed medical diAgnostics, (317803, www.minerva-project.eu) (2017)

  • NKT Photonics: www.nktphotonics.com

  • Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L.C. Kimerling, D.T.H. Tan, A. Agarwal: On-chip chalcogenide glass waveguide-integrated MIR PbTe detectors, Appl. Phys. Lett. 109, 071111–071113 (2016)

    Article  CAS  Google Scholar 

  • Z. Han, P. Lin, V. Singh, L. Kimerling, K. Richardson, A. Agarwal, D.T.H. Tan: On-chip MIR gas detection using chalcogenide glass waveguide, Appl. Phys. Lett. 108, 141106.1–141106.3 (2016)

    Google Scholar 

  • HITRAN (high-resolution transmission molecular absorption) database: HITRAN online, 2016 edition, hitran.org

    Google Scholar 

  • D.R.J. Boyd, H.W. Thompson, R.L. Williams: Vibration-rotation bands of methane, Proc. R. Soc. Lond. A 213, 42–54 (1952)

    Article  CAS  Google Scholar 

  • NIST: IR for infrared transmittance spectrum of CH4, https://webbook.nist.gov/cgi/cbook.cgi?ID=C74828&Type=IR-SPEC&Index=1 (1 Jan 2016)

  • P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies: Low-loss chalcogenide waveguides for chemical sensing in the MIR, Opt. Express 21(24), 029927–029937 (2013)

    Article  CAS  Google Scholar 

  • E. Baudet, A. Guttierez-Arroyo, M. Bailleul, P. Nemec, J. Charrier, L. Bodiou, J. Lemaitre, E. Rinnert, K. Michel, F. Colas, B. Bureau, V. Nazabal: Chalcogenide waveguide for sensing applications in the MIR. In: Adv. Photonics 2017, Vol. ITh1A.6 (2017)

    Google Scholar 

  • J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, V. Nazabal: Evanescent wave optical microsensor based on chalcogenide glass, Sens. Actuators B 173, 468–476 (2012)

    Article  CAS  Google Scholar 

  • A. Gassenq, N. Hattasan, L. Cerutti, J.B. Rodriguez, E. Tournié, G. Roelkens: Study of evanescently-coupled and grating assisted GaInAsSb photodiodes integrated on a silicon photonic chip, Opt. Express 20(11), 11665–11672 (2012)

    Article  CAS  Google Scholar 

  • V. Singh, T. Zens, J. Hu, J. Wang, J.D. Musgraves, K. Richardson, L.C. Kimerling, A. Agarwal: Evanescently coupled MIR for integrated sensing applications: Theory and design, Sens. Actuators B 185, 195–200 (2013)

    Article  CAS  Google Scholar 

  • A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, R. Thomson: Three dimensional MIR photonic circuits in chalcogenide glass, Opt. Lett. 37(3), 392–394 (2012)

    Article  Google Scholar 

  • C. Tsay, E. Mujagic, C.K. Madsen, C.F. Gmachl, C.B. Arnold: Mid-infrared characterization of solution-processed As2Se3 chalcogenide glass waveguides, Opt. Express 18(15), 15523–15529 (2010)

    Article  CAS  Google Scholar 

  • C. Vigreux, M.V. Thi, G. Maulion, R. Kribich, M. Barillot, V. Kirschner, A. Pradel: Wide-range transmitting chalcogenide films and development of micro-components for infrared integrated optics applications, Opt. Mater. Express 4(8), 1618–1631 (2014)

    Article  CAS  Google Scholar 

  • N. Adel-Moneim: Fabrication of Planar Optical Components in Chalcogenide Glasses, Ph.D. Thesis (University of Nottingham, Nottingham 2013)

    Google Scholar 

  • T. Han, S. Madden, S. Debbarma, B. Luther-Davies: Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating, Opt. Express 19(25), 25447–25453 (2011)

    Article  CAS  Google Scholar 

  • W.J. Pan, H. Rowe, D. Zhang, Y. Zhang, A. Loni, D. Furniss, P. Sewell, T.M. Benson, A.B. Seddon: One-step hot embossing of optical rib waveguides in chalcogenide glasses, Microw. Opt. Technol. Lett. 50(7), 1961–1963 (2008)

    Article  Google Scholar 

  • Z.G. Lian, W.J. Pan, D. Furniss, T.M. Benson, A.B. Seddon, T. Kohoutek, J. Orava, T. Wagner: Embossing of chalcogenide glasses: Monomode rib optical waveguides in evaporated thin films, Opt. Lett. 34(8), 1234–1236 (2009)

    Article  CAS  Google Scholar 

  • N.S. Abdel-Moneim, C.J. Mellor, T.M. Benson, A.B. Seddon, D. Furniss: Fabrication of stable, low optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip, Opt. Quantum. Electron. 47, 351–361 (2015)

    Article  CAS  Google Scholar 

  • M.R. Karim, B.M.A. Rahman, G.P. Agrawal: MIR supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide, Opt. Express 23(5), 6903–6914 (2015)

    Article  CAS  Google Scholar 

  • K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson: Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors, J. Nonlinear Opt. Phys. 19(01), 75–99 (2010)

    Article  CAS  Google Scholar 

  • V. Singh, P.T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A.P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J.D. Musgraves, K. Richardson, L.C. Kimerling, A. Agarwal: Review- mid-infrared materials and devices on a Si platform for optical sensing, Sci. Technol. Adv. Mater. 15, 014603–014618 (2014)

    Article  CAS  Google Scholar 

  • V. Singh: Chalcogenide Glass Materials for Integrated Infrared Photonics, Ph.D. Thesis (MIT, Boston 2015)

    Google Scholar 

  • H. Lin, L. Li, Y. Zou, S. Danto, J.D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P.T. Lin, V. Singh, A. Agarwal, L.C. Kimerling, J. Hu: Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators, Opt. Lett. 39, 1470–1472 (2013)

    Article  CAS  Google Scholar 

  • P. Ma, D.-Y. Choi, Y. Yu, Z. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, S. Madden: High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing, Opt. Express 23(15), 19969–19979 (2015)

    Article  CAS  Google Scholar 

  • S.A. Miller, M. Yu, X. Ji, A.G. Griffith, J. Cardenas, A.L. Gaeta, M. Lipson: Low-loss silicon platform for broadband mid-infrared photonics, Optica 4(7), 707–712 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela B. Seddon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Seddon, A.B. (2019). Mid-Infrared Molecular Sensing. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_47

Download citation

Publish with us

Policies and ethics

Navigation