Part of the book series: Springer Handbooks ((SHB))

Abstract

The possibility to shape glass easily and in all kind of forms for applications in our everyday life is one of the key factors to its success. The fabrication of a glass article comprises a succession of steps, often starting from a hot glass melt that is shaped during its cooling. The product can then be worked at lower temperatures, to modify its dimensions or its surface finish.

In this chapter, the sha** processes at both high and low temperatures are presented. In a first part, the different forming processes (sha** at high temperature) developed by the glass industry are illustrated, and a specific emphasis is given to glass viscosity, a key parameter in these processes. In the second part of the chapter, the sha** processes occurring at low temperatures, such as cutting or grinding, are described. In this section, specific attention is given to the mechanical behavior of the glass during the process as well as to machining parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 349.00
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • W. Trier, K.L. Loewenstein: Glass Furnaces: Design, Construction and Operation (Society of Glass Technology, Sheffield 1987)

    Google Scholar 

  • E.B. Shand, C.H. Greene, J.A. Grant: Glass Engineering Handbook (McGraw-Hill, New York 1958)

    Google Scholar 

  • S.R. Scholes, C.H. Greene: Modern Glass Practice, 7th edn. (Cahners, Boston 1975)

    Google Scholar 

  • E.L. Bourhis: Glass—Mechanics and Technology (Wiley, Weinheim 2008)

    Google Scholar 

  • I.W. Donald: Glass-To-Metal Seals (Society of Glass Technology, Sheffield 2009)

    Google Scholar 

  • A. Fluegel: Glass viscosity calculation based on a global statistical modelling approach, Glass Technol. 48(1), 13–30 (2007)

    CAS  Google Scholar 

  • ASTM C338-93: Standard Test Method for Softening Point of Glass (ASTM International, West Conshohocken 2008)

    Google Scholar 

  • G. Chui: Heat transfer and temperature control in an annealing lehr for float glass, J. Am. Ceram. Soc. 60(11/12), 477–484 (1977)

    Article  Google Scholar 

  • M. Cable: Mechanization of glass manufacture, J. Am. Ceram. Soc. 82(5), 1095–1112 (1999)

    Google Scholar 

  • A. Warude: Analysis of Glass Mold to Enhance Rate of Heat Transfer, M.Sc. Thesis (Univ. South Florida, Tampa 2004)

    Google Scholar 

  • X.H. Zhang, Y. Guimond, Y. Bellec: Production of complex chalcogenide glass optics by molding for thermal imaging, J. Non-Cryst. Solids 326/327, 519–523 (2003)

    Article  CAS  Google Scholar 

  • F.T. Wallenberger, J.C. Watson, H. Li: Glass fibers. In: ASM Handbook Composites, Vol. 21, ed. by D.B. Miracle, S.L. Donaldson (ASM International, Materials Park 2001) pp. 27–34

    Google Scholar 

  • A.K. Varshney: Chemical strengthening of glass: Lessons learned and yet to be learned, Int. J. Appl. Glass. Sci. 1(2), 131–142 (2010)

    Article  CAS  Google Scholar 

  • H.J. Stevens: Engineered Materials Handbook: Ceramics and Glasses, Vol. 4 (ASM International, Materials Park 1991), ed. by S.J. Schneider

    Google Scholar 

  • L.A.B. Pilkington, K. Bickerstaff: Improvements in or relating to the manufacture of glass, GB Patent 769692 (1954)

    Google Scholar 

  • L.A.B. Pilkington, K. Bickerstaff: Manufacture of flat glass, US Patent 2911759 (1959)

    Google Scholar 

  • M. Cable: The development of flat glass manufacturing process, Transact. Newcomen Soc. 74, 19–43 (2004)

    Article  Google Scholar 

  • B. Scholz, F.S. Kirn: Early Nineteenth Century Glass Technology in Austria and Germany (Society of Glass Technology, Sheffield 2004), translated by M. Cable

    Google Scholar 

  • M.L.F. Nascimento: Brief history of the flat glass patent—Sixty years of the float process, World Patent Inf. 38, 50–56 (2014)

    Article  Google Scholar 

  • N. Ban, T. Kamihori, H. Takamuku: A study of the behavior of volatiles in the float process, J. Non-Cryst. Solids 345/346, 777–781 (2004)

    Article  CAS  Google Scholar 

  • J. Belis, B. Inghelbrecht, R.V. Impe, D. Callewaert: Cold bending of laminated glass panels, Heron 52(1/2), 123–146 (2007)

    Google Scholar 

  • S.M. Dockerty: Sheet forming apparatus, US Patent 3338696A (1967)

    Google Scholar 

  • S.M. Dockerty, G.C. Shay: Downflow sheet drawing method and apparatus, US Patent 3149949A (1964)

    Google Scholar 

  • H.J. Lin, W.K. Chang: Design of a sheet forming apparatus for overflow fusion process by numerical simulation, J. Non-Cryst. Solids 353, 2817–2825 (2007)

    Article  CAS  Google Scholar 

  • G. Delaizir, L. Calvez: A novel approach to develop chalcogenide glasses and glass-ceramics by pulsed current electrical sintering (PCES). In: Sintering of Ceramics—New Emerging Techniques, ed. by A. Lakshmanan (InTechOpen, London 2012) pp. 281–306

    Google Scholar 

  • W.D. Kingery, H.K. Bowen, D.R. Uhlmann: Introduction to Ceramics (Wiley, Chichester 1976)

    Google Scholar 

  • M. Hubert, G. Delaizir, J. Monnier, C. Godart, H.-L. Ma, X.-H. Zhang, L. Calvez: An innovative approach to develop highly performant chalcogenide glasses and glass-ceramics transparent in the infrared range, Opt. Express 19(23), 23513–23522 (2011)

    Article  CAS  Google Scholar 

  • J. Jones, A. Clare (Eds.): Bioglasses—An Introduction (Wiley, Chichester 2012)

    Google Scholar 

  • R. Gmeiner, U. Deisinger, J. Schonherr, B. Lechner, R. Detsch, A. Boccaccini, J. Stampfl: Additive manufacturing of bioactive glasses and silicate bioceramics, J. Ceram. Sci. Technol. 6(2), 75–86 (2015)

    Google Scholar 

  • J. Klein: Additive Manufacturing of Optically Transparent Glass, M.Sc. Thesis (MIT, Boston 2015)

    Book  Google Scholar 

  • J. Klein, G. Franchin, M. Stern, M. Kayser, C. Inamura, S.Dave, N. Oxman, P. Houk: Methods ands apparatus for additive manufacturing of glass, US patent application 20150307385 (2015)

    Google Scholar 

  • J. Klein, M. Stern, G. Franchin, M. Kayser, C. Inamura, S. Dave, J.C. Weaver, P. Houk, P. Colombo, M. Yang, N. Oxman: Additive manufacturing of optically transparent glass, 3-D Print. Addit. Manuf. 2(3), 92–105 (2015)

    Article  Google Scholar 

  • A. Brient, M. Brissot, T. Rouxel, J.C. Sangleboeuf: Influence of grinding parameters on glass workpieces surface finish using response surface methodology, J. Manuf. Sci. Eng. 133(4), 044501–044501 (2011)

    Article  Google Scholar 

  • A. Brient, R. Laniel, M. Miroir, G.L. Goic, J.C. Sangleboeuf, S. Samper: Multiscale topography analysis of water-jet pocketing of silica glass surfaces. In: Proc. 15th Int. Conf. Metrol. Prop. Eng. Surf., Charlotte (2015)

    Google Scholar 

  • R. Laniel, M. Tchikou, J.-C. Sangleboeuf: A discrete elements simulation and analysis of a high energy stirred milling process, Mech. Ind. 13, 415–421 (2012)

    Article  Google Scholar 

  • A. Arora, D.B. Marshall, B.R. Lawn, M.V. Swain: Indentation deformation/fracture of normal and anomalous glasses, J. Non-Cryst. Solids 31(3), 415–428 (1979)

    Article  CAS  Google Scholar 

  • R.F. Cook, G.M. Pharr: Direct observation and analysis of indentation cracking in glasses and ceramics, J. Am. Ceram. Soc. 73(4), 787–817 (1990)

    Article  CAS  Google Scholar 

  • I. Finnie: Some reflections on the past and future of erosion, Wear 186, 1–10 (1995)

    Article  Google Scholar 

  • M. Hashish: A modeling study of metal cutting with abrasive water-jets, J. Eng. Mater. Technol. 106(1), 88–100 (1984)

    Article  Google Scholar 

  • J.G.A. Bitter: A study of erosion phenomena part I, Wear 6(1), 5–21 (1963)

    Article  Google Scholar 

  • J.G.A. Bitter: A study of erosion phenomena, Wear 6(3), 169–190 (1963)

    Article  Google Scholar 

  • J.H. Neilson, A. Gilchrist: Erosion by a stream of solid particles, Wear 11(2), 111–122 (1968)

    Article  Google Scholar 

  • V. Le Houérou: Scratchability of Soda-Lime Silica Glasses, Ph.D. Thesis (Universite de Rennes, Rennes 2005)

    Google Scholar 

  • V. Le Houérou, J.C. Sangleboeuf, S. Deriano, T. Rouxel, G. Duisit: Surface damage of soda–lime–silica glasses: indentation scratch behavior, J. Non-Cryst. Solids 316(1), 54–63 (2003)

    Article  Google Scholar 

  • T. Yu, H. Li, W. Wang: Experimental investigation on grinding characteristics of optical glass BK7: With special emphasis on the effects of machining parameters, Int. J. Adv. Manuf. Technol. 82(5), 1405–1419 (2016)

    Article  Google Scholar 

  • R.L. Hecker, I.M. Ramoneda, S.Y. Liang: Analysis of wheel topography and grit force for grinding process modeling, J. Manuf. Process. 5(1), 13–23 (2003)

    Article  Google Scholar 

  • M. Barge, J. Rech, H. Hamdi, J.-M. Bergheau: Experimental study of abrasive process, Wear 264(5/6), 382–388 (2008)

    Article  CAS  Google Scholar 

  • P. Stępień: A probabilistic model of the grinding process, Appl. Math. Model. 33(10), 3863–3884 (2009)

    Article  Google Scholar 

  • H.-C. Chang, J.J.J. Wang: A stochastic grinding force model considering random grit distribution, Int. J. Mach. Tools Manuf. 48(12/13), 1335–1344 (2008)

    Article  Google Scholar 

  • M. Bigerelle, D. Najjar, A. Iost: Multiscale functional analysis of wear: A fractal model of the grinding process, Wear 258(1–4), 232–239 (2005)

    Article  CAS  Google Scholar 

  • G.T. Smith: Industrial Metrology: Surfaces and Roundness (Springer, London 2002)

    Book  Google Scholar 

  • D.J. Whitehouse: Handbook of Surface Metrology (CRC, Boca Raton 1994)

    Google Scholar 

  • T. Suratwala, L. Wong, P. Miller, M.D. Feit, J. Menapace, R. Steele, P. Davis, D. Walmer: Sub-surface mechanical damage distributions during grinding of fused silica, J. Non-Cryst. Solids 352(52–54), 5601–5617 (2006)

    Article  CAS  Google Scholar 

  • R. Laheurte, P. Darnis, N. Darbois, O. Cahuc, J. Neauport: Subsurface damage distribution characterization of ground surfaces using Abbott–Firestone curves, Opt. Express 20(12), 13551–13559 (2012)

    Article  CAS  Google Scholar 

  • D.A. Stephenson, J.S. Agapiou: Metal Cutting Theory and Practice, 3rd edn. (CRC, Boca Raton 1994)

    Google Scholar 

  • H. Demir, A. Gullu, I. Ciftci, U. Seker: An investigation into the influences of grain size and grinding parameters on surface roughness and grinding forces when grinding, Strojniski Vestnik/J. Mech. Eng. 56(7/8), 447–454 (2010)

    Google Scholar 

  • S. Tong, S.M. Gracewski, P.D. Funkenbusch: Measurement of the preston coefficient of resin and bronze bond tools for deterministic microgrinding of glass, Precis. Eng. 30(2), 115–122 (2006)

    Article  Google Scholar 

  • R.L. Hecker, S.Y. Liang: Predictive modeling of surface roughness in grinding, Int. J. Mach. Tools Manuf. 43(8), 755–761 (2003)

    Article  Google Scholar 

  • Y. Zhang, Y. Luo, J.F. Wang, Z. Li: Research on the fractal of surface topography of grinding, Int. J. Mach. Tools Manuf. 41(13/14), 2045–2049 (2001)

    Article  Google Scholar 

  • G. Savio, R. Meneghello, G. Concheri: A surface roughness predictive model in deterministic polishing of ground glass moulds, Int. J. Mach. Tools Manuf. 49(1), 1–7 (2009)

    Article  Google Scholar 

  • A. Venu Gopal, P. Venkateswara Rao: Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding, Int. J. Mach. Tools Manuf. 43(13), 1327–1336 (2003)

    Article  Google Scholar 

  • J.-S. Kwak: Application of Taguchi and response surface methodologies for geometric error in surface grinding process, Int. J. Mach. Tools Manuf. 45(3), 327–334 (2005)

    Article  Google Scholar 

  • W. Gu, Z. Yao, H. Li: Investigation of grinding modes in horizontal surface grinding of optical glass BK7, J. Mater. Process. Technol. 211(10), 1629–1636 (2001)

    Article  CAS  Google Scholar 

  • M.C. Shaw: Principles of Abrasive Processing (Clarendon, Oxford 1996)

    Google Scholar 

  • T.G. Bifano, T.A. Dow, R.O. Scattergood: Ductile-regime grinding: A new technology for machining brittle materials, J. Eng. Ind. 113(2), 184–189 (1991)

    Article  Google Scholar 

  • S. Ferrendier: Influence de l'Evolution Granulométrique des Abrasifs sur l'Enlèvement de Matière lors de la Découpe par Jet d'Eau Abrasif, Ph.D. Thesis (École Nationale Supérieure d'Arts et Métiers, Paris 2001)

    Google Scholar 

  • L. Vignaret: Découpage au jet de fluide, Oxycoupage, jet de plasma, laser et jet d'eau sous pression. In: Techniques de l'ingénieur (1989) B7340 v1

    Google Scholar 

  • A. Comier: Développement d'un modèle d'enlèvement de matière par granulation utilisant le jet d'eau haute pression: Application au démantèlement de pneumatiques, Ph.D. Thesis (École Nationale Supérieure d'Arts et Métiers, Paris 2004)

    Google Scholar 

  • G. Fowler: Abrasive Water-Jet Controlled Depth Milling of Titanium Alloys, Ph.D. Thesis (University of Nottingham, Nottingham 2003)

    Google Scholar 

  • A.A. El-Domiaty, M.A. Shabara, A.A. Abdel-Rahman, A.K. Al-Sabeeh: On the modelling of abrasive water-jet cutting, Int. J. Adv. Manuf. Technol. 12(4), 255–265 (1996)

    Article  Google Scholar 

  • S. Hloch, J. Valíček: Topographical anomaly on surfaces created by abrasive water-jet, Int. J. Adv. Manuf. Technol. 59(5), 593–604 (2012)

    Article  Google Scholar 

  • S. Hloch, J. Valíček: Abrasive water-jet cutting mechanism, Strojarstvo 10, 12–13 (2006)

    Google Scholar 

  • M. Chithirai Pon Selvan, N. Mohana Sundara Raju: Assessment of process parameters in abrasive water-jet cutting of stainless steel, Int. J. Adv. Eng. Technol. 1(3), 34–40 (2011)

    Google Scholar 

  • M. Hashish: Optimization factors in abrasive-water-jet machining, J. Eng. Ind. 113(1), 29–37 (1991)

    Google Scholar 

  • M. Chithirai Pon Selvan, N. Mohana Sundara Raju: Abrasive water-jet cutting surfaces of ceramics—An experimental investigation, Int. J. Adv. Sci. Eng. Technol. Res. 1(3), 52–59 (2012)

    Google Scholar 

  • A. Laurinat, H. Louis, G. Meier-Wiechert: A model for milling with abrasive water-jet. In: Proc. 7th Am. Water-Jet Conf., Water Jet Tech. Assoc., Saint Louis (1993)

    Google Scholar 

  • G. Fowler, I.R. Pashby, P.H. Shipway: The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V, Wear 266(7/8), 613–620 (2009)

    Article  CAS  Google Scholar 

  • G. Fowler, P.H. Shipway, I.R. Pashby: Abrasive water-jet controlled depth milling of Ti6Al4V alloy—An investigation of the role of jet–work piece traverse speed and abrasive grit size on the characteristics of the milled material, J. Mater. Process. Technol. 161(3), 407–414 (2005)

    Article  CAS  Google Scholar 

  • Y. Petit: Découpe du verre plat de silicate sodocalcique. In: Techniques de l'ingénieur Sciences et technologies du verre (2012) n4401

    Google Scholar 

  • A.A. Khan, M.M. Haque: Performance of different abrasive materials during abrasive water jet machining of glass, J. Mater. Proc. Technol. 191(1–3), 404–407 (2007)

    Article  CAS  Google Scholar 

  • L.M. Hlaváč, I.M. Hlaváčová, L. Gembalová, J. Kaličinský, S. Fabian, J. Měšt'ánek, J. Kmec, V. Mádr: Experimental method for the investigation of the abrasive water jet cutting quality, J. Mater. Process. Technol. 209(20), 6190–6195 (2009)

    Article  CAS  Google Scholar 

  • M.C. Kong, D. Axinte, W. Voice: An innovative method to perform maskless plain water-jet milling for pocket generation: A case study in Ti-based superalloys, Int. J. Mach. Tools Manuf. 51(7/8), 642–648 (2011)

    Article  Google Scholar 

  • J. Wang: Abrasive water-jet machining of polymer matrix composites–cutting performance, erosive process and predictive models, Int. J. Adv. Manuf. Technol. 15(10), 757–768 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Romain Laniel or Antoine Brient .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Laniel, R., Hubert, M., Miroir, M., Brient, A. (2019). Glass Sha**. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_36

Download citation

Publish with us

Policies and ethics

Navigation