Abstract

The last four decades of extensive investigations have revealed that sympathetic nervous system plays a critical pathogenic role in blood pressure elevation and sustained hypertension. The regional noradrenaline spillover technique was a major breakthrough in assessing human sympathetic activation and indicated that particularly two organs – the heart and the kidney are pivotal in human hypertension and heart failure. Enhanced sympathetic activation has been directly linked to hypertension mediated organ damage and associated cardiovascular and renal complications. Notably, in heart failure patients, high cardiac and renal sympathetic tone contributes to the progression of disease and mortality. There are now preliminary data to suggest that therapeutic approaches such as renal denervation, baroreflex activation therapy and carotid body removal can modulate directly the neural mechanisms underlying the pathophysiology of hypertension and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62(2):347–504.

    CAS  PubMed  Google Scholar 

  2. Julius S, Krause L, Schork NJ, Mejia AD, Jones KA, van de Ven C, et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens. 1991;9(1):77–84.

    CAS  PubMed  Google Scholar 

  3. Messerli FH, Ventura HO, Reisin E, Dreslinski GR, Dunn FG, MacPhee AA, et al. Borderline hypertension and obesity: two prehypertensive states with elevated cardiac output. Circulation. 1982;66(1):55–60.

    CAS  PubMed  Google Scholar 

  4. Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clin Exp Hypertens A. 1989;11(Suppl 1):75–89.

    PubMed  Google Scholar 

  5. DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R245–53.

    CAS  PubMed  Google Scholar 

  6. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33(9):1058–66.

    CAS  PubMed  Google Scholar 

  7. Schlaich MP, Lambert E, Kaye DM, Krozowski Z, Campbell DJ, Lambert G, et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension. 2004;43(2):169–75.

    CAS  PubMed  Google Scholar 

  8. Esler M, Jennings G, Biviano B, Lambert G, Hasking G. Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol. 1986;8(Suppl 5):S39–43.

    PubMed  Google Scholar 

  9. Julius S, Nesbitt S. Sympathetic overactivity in hypertension. A moving target. Am J Hypertens. 1996;9(11):113S–20S.

    CAS  PubMed  Google Scholar 

  10. Rumantir MS, Jennings GL, Lambert GW, Kaye DM, Seals DR, Esler MD. The ‘adrenaline hypothesis’ of hypertension revisited: evidence for adrenaline release from the heart of patients with essential hypertension. J Hypertens. 2000;18(6):717–23.

    CAS  PubMed  Google Scholar 

  11. Blankestijn PJ, Man in’t Veld AJ, Tulen J, van den Meiracker AH, Boomsma F, Moleman P, et al. Support for adrenaline-hypertension hypothesis: 18 hour pressor effect after 6 hours adrenaline infusion. Lancet. 1988;2(8625):1386–9.

    CAS  PubMed  Google Scholar 

  12. Greenwood JP, Stoker JB, Mary DA. Single-unit sympathetic discharge : quantitative assessment in human hypertensive disease. Circulation. 1999;100(12):1305–10.

    CAS  PubMed  Google Scholar 

  13. Seravalle G, Lonati L, Buzzi S, Cairo M, Quarti Trevano F, Dell’Oro R, et al. Sympathetic nerve traffic and baroreflex function in optimal, normal, and high-normal blood pressure states. J Hypertens. 2015;33(7):1411–7.

    CAS  PubMed  Google Scholar 

  14. Hering D, Kara T, Kucharska W, Somers VK, Narkiewicz K. High-normal blood pressure is associated with increased resting sympathetic activity but normal responses to stress tests. Blood Press. 2013;22(3):183–7.

    PubMed  PubMed Central  Google Scholar 

  15. Hering D, Kara T, Kucharska W, Somers VK, Narkiewicz K. Longitudinal tracking of muscle sympathetic nerve activity and its relationship with blood pressure in subjects with prehypertension. Blood Press. 2016;25(3):184–92.

    PubMed  Google Scholar 

  16. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–64.

    CAS  PubMed  Google Scholar 

  17. Hering D, Marusic P, Walton AS, Lambert EA, Krum H, Narkiewicz K, et al. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension. 2014;64(1):118–24.

    CAS  PubMed  Google Scholar 

  18. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.

    CAS  PubMed  Google Scholar 

  19. Bertoia ML, Waring ME, Gupta PS, Roberts MB, Eaton CB. Implications of new hypertension guidelines in the United States. Hypertension. 2012;60(3):639–44.

    CAS  PubMed  Google Scholar 

  20. Narkiewicz K, Grassi G, Mancia G, Hedner T. The sympathetic nervous system and cardiovascular disease. Gdańsk Via Medica Gdansk. 2008.

    Google Scholar 

  21. Parmer RJ, Cervenka JH, Stone RA. Baroreflex sensitivity and heredity in essential hypertension. Circulation. 1992;85(2):497–503.

    CAS  PubMed  Google Scholar 

  22. Rea RF, Hamdan M. Baroreflex control of muscle sympathetic nerve activity in borderline hypertension. Circulation. 1990;82(3):856–62.

    CAS  PubMed  Google Scholar 

  23. Trzebski A, Tafil M, Zoltowski M, Przybylski J. Increased sensitivity of the arterial chemoreceptor drive in young men with mild hypertension. Cardiovasc Res. 1982;16(3):163–72.

    CAS  PubMed  Google Scholar 

  24. Somers VK, Mark AL, Abboud FM. Potentiation of sympathetic nerve responses to hypoxia in borderline hypertensive subjects. Hypertension. 1988;11(6 Pt 2):608–12.

    CAS  PubMed  Google Scholar 

  25. Sinski M, Lewandowski J, Przybylski J, Bidiuk J, Abramczyk P, Ciarka A, et al. Tonic activity of carotid body chemoreceptors contributes to the increased sympathetic drive in essential hypertension. Hypertens Res. 2012;35(5):487–91.

    CAS  PubMed  Google Scholar 

  26. Mancia G, Dell’Oro R, Quarti-Trevano F, Scopelliti F, Grassi G. Angiotensin-sympathetic system interactions in cardiovascular and metabolic disease. J Hypertens Suppl. 2006;24(1):S51–6.

    CAS  PubMed  Google Scholar 

  27. Ferrier C, Esler MD, Eisenhofer G, Wallin BG, Horne M, Cox HS, et al. Increased norepinephrine spillover into the jugular veins in essential hypertension. Hypertension. 1992;19(1):62–9.

    CAS  PubMed  Google Scholar 

  28. Lambert GW, Kaye DM, Thompson JM, Turner AG, Cox HS, Vaz M, et al. Internal jugular venous spillover of noradrenaline and metabolites and their association with sympathetic nervous activity. Acta Physiol Scand. 1998;163(2):155–63.

    CAS  PubMed  Google Scholar 

  29. Ferrier C, Jennings GL, Eisenhofer G, Lambert G, Cox HS, Kalff V, et al. Evidence for increased noradrenaline release from subcortical brain regions in essential hypertension. J Hypertens. 1993;11(11):1217–27.

    CAS  PubMed  Google Scholar 

  30. Alosco ML, Gunstad J, Xu X, Clark US, Labbe DR, Riskin-Jones HH, et al. The impact of hypertension on cerebral perfusion and cortical thickness in older adults. J Am Soc Hypertens. 2014;8(8):561–70.

    PubMed  PubMed Central  Google Scholar 

  31. Naumczyk P, Sabisz A, Witkowska M, Graff B, Jodzio K, Gasecki D, et al. Compensatory functional reorganization may precede hypertension-related brain damage and cognitive decline: a functional magnetic resonance imaging study. J Hypertens. 2017;35(6):1252–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123(3):327–34.

    PubMed  Google Scholar 

  33. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557–62.

    CAS  PubMed  Google Scholar 

  34. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34(4 Pt 2):724–8.

    CAS  PubMed  Google Scholar 

  35. Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108(5):560–5.

    PubMed  Google Scholar 

  36. Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Arenare F, Spaziani D, et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53(2):205–9.

    CAS  PubMed  Google Scholar 

  37. Grassi G, Seravalle G, Cattaneo BM, Lanfranchi A, Vailati S, Giannattasio C, et al. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation. 1995;92(11):3206–11.

    CAS  PubMed  Google Scholar 

  38. Ferguson DW, Berg WJ, Sanders JS. Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct microneurographic recordings. J Am Coll Cardiol. 1990;16(5):1125–34.

    CAS  PubMed  Google Scholar 

  39. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73(4):615–21.

    CAS  PubMed  Google Scholar 

  40. Bristow MR. Beta-adrenergic receptor blockade in chronic heart failure. Circulation. 2000;101(5):558–69.

    CAS  PubMed  Google Scholar 

  41. Lamba S, Abraham WT. Alterations in adrenergic receptor signaling in heart failure. Heart Fail Rev. 2000;5(1):7–16.

    CAS  PubMed  Google Scholar 

  42. Colucci WS. The effects of norepinephrine on myocardial biology: implications for the therapy of heart failure. Clin Cardiol. 1998;21(12 Suppl 1):I20–4.

    CAS  PubMed  Google Scholar 

  43. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol. 1995;26(5):1257–63.

    CAS  PubMed  Google Scholar 

  44. Petersson M, Friberg P, Eisenhofer G, Lambert G, Rundqvist B. Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J. 2005;26(9):906–13.

    PubMed  Google Scholar 

  45. Setoguchi S, Stevenson LW. Hospitalizations in patients with heart failure: who and why. J Am Coll Cardiol. 2009;54(18):1703–5.

    PubMed  Google Scholar 

  46. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85.

    CAS  PubMed  Google Scholar 

  47. Weber KT. Mechanisms of disease—aldosterone in congestive heart failure. N Engl J Med. 2001;345(23):1689–97.

    CAS  PubMed  Google Scholar 

  48. Ferguson DW, Abboud FM, Mark AL. Selective impairment of baroreflex-mediated vasoconstrictor responses in patients with ventricular dysfunction. Circulation. 1984;69(3):451–60.

    CAS  PubMed  Google Scholar 

  49. Mark AL. Sympathetic dysregulation in heart failure: mechanisms and therapy. Clin Cardiol. 1995;18(3 Suppl):I):I3–8.

    PubMed  Google Scholar 

  50. Mortara A, La Rovere MT, Pinna GD, Prpa A, Maestri R, Febo O, et al. Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation. 1997;96(10):3450–8.

    CAS  PubMed  Google Scholar 

  51. Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest. 1991;87(6):1953–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. vandeBorne P, Oren R, Anderson EA, Mark AL, Somers VK. Tonic chemoreflex activation does not contribute to elevated muscle sympathetic nerve activity in heart failure. Circulation. 1996;94(6):1325–8.

    CAS  Google Scholar 

  53. Narkiewicz K, Pesek CA, van de Borne PJ, Kato M, Somers VK. Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation. 1999;100(3):262–7.

    CAS  PubMed  Google Scholar 

  54. Franchitto N, Despas F, Labrunee M, Roncalli J, Boveda S, Galinier M, et al. Tonic chemoreflex activation contributes to increased sympathetic nerve activity in heart failure-related anemia. Hypertension. 2010;55(4):1012–7.

    CAS  PubMed  Google Scholar 

  55. Despas F, Lambert E, Vaccaro A, Labrunee M, Franchitto N, Lebrin M, et al. Peripheral chemoreflex activation contributes to sympathetic baroreflex impairment in chronic heart failure. J Hypertens. 2012;30(4):753–60.

    CAS  PubMed  Google Scholar 

  56. Yumino D, Wang H, Floras JS, Newton GE, Mak S, Ruttanaumpawan P, et al. Prevalence and physiological predictors of sleep apnea in patients with heart failure and systolic dysfunction. J Card Fail. 2009;15(4):279–85.

    PubMed  Google Scholar 

  57. Ponikowski P, Chua TP, Anker SD, Francis DP, Doehner W, Banasiak W, et al. Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation. 2001;104(5):544–9.

    CAS  PubMed  Google Scholar 

  58. Shepherd JT. Heart failure: role of cardiovascular reflexes. Cardioscience. 1990;1(1):7–12.

    CAS  PubMed  Google Scholar 

  59. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819–23.

    CAS  PubMed  Google Scholar 

  60. Brunner-La Rocca HP, Esler MD, Jennings GL, Kaye DM. Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J. 2001;22(13):1136–43.

    CAS  PubMed  Google Scholar 

  61. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.

    PubMed  Google Scholar 

  62. Krum H, Schlaich MP, Sobotka PA, Bohm M, Mahfoud F, Rocha-Singh K, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383(9917):622–9.

    PubMed  Google Scholar 

  63. Esler MD, Bohm M, Sievert H, Rump CL, Schmieder RE, Krum H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35(26):1752–9.

    PubMed  PubMed Central  Google Scholar 

  64. Bohm M, Mahfoud F, Ukena C, Hoppe UC, Narkiewicz K, Negoita M, et al. First report of the Global SYMPLICITY Registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension. 2015;65(4):766–74.

    PubMed  Google Scholar 

  65. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    CAS  PubMed  Google Scholar 

  66. Desch S, Okon T, Heinemann D, Kulle K, Rohnert K, Sonnabend M, et al. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension. 2015;65(6):1202–8.

    CAS  PubMed  Google Scholar 

  67. Mathiassen ON, Vase H, Bech JN, Christensen KL, Buus NH, Schroeder AP, et al. Renal denervation in treatment-resistant essential hypertension. A randomized, SHAM-controlled, double-blinded 24-h blood pressure-based trial. J Hypertens. 2016;34(8):1639–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015;385(9981):1957–65.

    PubMed  Google Scholar 

  69. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390(10108):2160–70.

    PubMed  Google Scholar 

  70. Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162(3):189–92.

    PubMed  Google Scholar 

  71. Hopper I, Gronda E, Hoppe UC, Rundqvist B, Marwick TH, Shetty S, et al. Sympathetic response and outcomes following renal denervation in patients with chronic heart failure: 12-month outcomes from the simplicity HF feasibility study. J Card Fail. 2017;23(9):702–7.

    PubMed  Google Scholar 

  72. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56(15):1254–8.

    PubMed  Google Scholar 

  73. Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6(2):152–8.

    PubMed  Google Scholar 

  74. Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–6.

    PubMed  Google Scholar 

  75. Wallbach M, Halbach M, Reuter H, Passauer J, Luders S, Bohning E, et al. Baroreflex activation therapy in patients with prior renal denervation. J Hypertens. 2016;34(8):1630–8.

    CAS  PubMed  Google Scholar 

  76. Weipert KF, Most A, Dorr O, Helmig I, Elzien M, Krombach G, et al. Rescue baroreflex activation therapy after Stanford B aortic dissection due to therapy-refractory hypertension. J Am Soc Hypertens. 2016;10(6):490–2.

    PubMed  Google Scholar 

  77. Floyd CN, Adeel MY, Wolff CB, Julu P, Shah M, Collier DJ, et al. First-in-man treatment of severe blood pressure variability with baroreflex activation therapy. Int J Cardiol. 2016;220:577–9.

    PubMed  Google Scholar 

  78. Gronda E, Seravalle G, Brambilla G, Costantino G, Casini A, Alsheraei A, et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proof-of-concept study. Eur J Heart Fail. 2014;16(9):977–83.

    PubMed  PubMed Central  Google Scholar 

  79. Gronda E, Seravalle G, Trevano FQ, Costantino G, Casini A, Alsheraei A, et al. Long-term chronic baroreflex activation: persistent efficacy in patients with heart failure and reduced ejection fraction. J Hypertens. 2015;33(8):1704–8.

    CAS  PubMed  Google Scholar 

  80. Narkiewicz K, Ratcliffe LE, Hart EC, Briant LJ, Chrostowska M, Wolf J, et al. Unilateral carotid body resection in resistant hypertension: a safety and feasibility trial. JACC Basic Transl Sci. 2016;1(5):313–24.

    PubMed  PubMed Central  Google Scholar 

  81. Niewinski P, Janczak D, Rucinski A, Jazwiec P, Sobotka PA, Engelman ZJ, et al. Carotid body removal for treatment of chronic systolic heart failure. Int J Cardiol. 2013;168(3):2506–9.

    PubMed  Google Scholar 

Download references

Disclosure

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmara Hering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Hering, D., Seravalle, G., Grassi, G., Narkiewicz, K. (2019). Neural Mechanisms. In: Dorobantu, M., Mancia, G., Grassi, G., Voicu, V. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-93320-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93320-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93319-1

  • Online ISBN: 978-3-319-93320-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation