Biodiversity Genomics: Monitoring Restoration Efforts Using DNA Barcoding and Environmental DNA

  • Chapter
  • First Online:
Lake Restoration Handbook

Abstract

We review recent advances in the use of molecular techniques as they apply to monitoring restoration efforts in lakes. Using DNA sequence data, biodiversity can now be assessed to levels previously unattainable using traditional, morphological assessments. In particular, DNA barcoding, the use of small standardised fragments of DNA, has become an increasingly widespread and common approach to identify species. Global initiatives such as the International Barcode of Life (iBOL) have coordinated these efforts and facilitated publically accessible reference databases such as the Barcode of Life Datasystems (BOLD). Such databases can be used for routine identification of specimens as well as for the assessment of community composition and monitoring of changes over time. Through the application of Next Generation Sequencing techniques, multiple samples can be run simultaneously (metabarcoding), greatly automating and streamlining the monitoring process. Reference databases can also be applied to environmental DNA (DNA that is shed into the environment by plants and animals). Here, species can be identified “sight unseen” through analyses of environmental samples (e.g. water, sediment). This latter method has proven useful for the monitoring of exotic fish species, particularly following eradication efforts. Ongoing developments in sequencing technology are likely to further enhance the utility of molecular techniques for assessing and monitoring restoration efforts in New Zealand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong K, Ball S (2005) DNA barcodes for biosecurity: invasive species identification. Philos Trans R Soc Lond B Biol Sci 360:1813–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auckland Regional Council (2005) Assessment of trophic state change in selected lakes of the Auckland Region based on rotifer assemblages. Technical Publication 269:31 Auckland Regional Council, Auckland, New Zealand

    Google Scholar 

  • Baird DJ, Hajibabaei M (2012) Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next–generation DNA sequencing. Mol Ecol 21:2039–2044

    Article  PubMed  Google Scholar 

  • Banks JC, Hogg ID, Cary SC (2009) The phylogeography of Adelie penguin faecal bacteria. Environ Microbiol 11:577–588

    Article  CAS  PubMed  Google Scholar 

  • Banks JC, Demetras NJ, Hogg ID, Knox MA, West DW (2016) Monitoring brown trout (Salmo trutta) eradication in a wildlife sanctuary using environmental DNA. N Z Nat Sci 41:1–13

    Google Scholar 

  • Bianchi F, Acri F, Aubry FB, Berton A, Boldrin A, Camatti E, Cassin D, Comaschi A (2003) Can plankton communities be considered as bio-indicators of water quality in the Lagoon of Venice? Mar Pollut Bull 46:964–971

    Article  CAS  PubMed  Google Scholar 

  • Biggs J, Ewald N, Valentini A, Gaboriaud C, Dejean T, Griffiths RA, Foster J, Wilkinson JW, Arnell A, Brotherton P, Williams P, Dunn F (2015) Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol Conserv 183:19–28

    Article  Google Scholar 

  • Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK (2012) Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol 27:233–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Article  PubMed  Google Scholar 

  • Burns NM, Rutherford JC, Clayton JS (1999) A monitoring and classification system for New Zealand lakes and reservoirs. Lake Reservoir Manage 15:255–271

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman MA, Lewis MH, Winterbourn MJ (2011) Guide to the freshwater Crustacea of New Zealand. New Zealand Freshwater Sciences Society, Wellington, New Zealand

    Google Scholar 

  • Civade R, Dejean T, Valentini A et al (2016) Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS One 11:e0157366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cline J, Braman JC, Hogrefe HH (1996) PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 24:3546–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristescu ME (2015) Genetic reconstructions of invasion history. Mol Ecol 24:2212–2225

    Article  PubMed  Google Scholar 

  • Darling JA, Mahon AR (2011) From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ Res 111:978–988

    Article  CAS  PubMed  Google Scholar 

  • Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarman SN (2013) Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: which counts count? Mol Ecol Resour 13:620–633

    Article  CAS  PubMed  Google Scholar 

  • Deiner K, Walser J-C, Mächler E, Altermatt F (2015) Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol Conserv 183:53–63

    Article  Google Scholar 

  • Dejean T, Valentini A, Duparc A, Pellier-Cuit S, Pompanon F, Teberlet P, Miaud C (2011) Persistence of environmental DNA in freshwater ecosystems. PLoS One 6:e23398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C (2012) Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J Appl Ecol 49:953–959

    Article  Google Scholar 

  • Diggle J, Patil J, Wisniewski C (2012) A manual for carp control: the Tasmanian model. Invasive Animals CRC, New Norfolk, TAS, Australia

    Google Scholar 

  • Dowle E, Pochon X, Banks J, Shearer K, Wood SA (2016) Targeted gene enrichment and high throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates. Mol Ecol Resour 16(5):1240–1254

    Article  CAS  PubMed  Google Scholar 

  • Duggan IC (2007) An assessment of the water quality of ten Waikato lakes based on zooplankton community composition. CBER Contract Report No. 60, Prepared for Environment Waikato, Centre for Biodiversity and Ecology Research, University of Waikato, Hamilton, New Zealand

    Google Scholar 

  • Duggan IC, Green JD, Shiel RJ (2001a) Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia 446–447:155–164

    Article  Google Scholar 

  • Duggan IC, Green JD, Thomasson K (2001b) Do rotifers have potential as bioindicators of lake trophic state? Verh Internat Verein Limnol 27:3497–3502

    Google Scholar 

  • Duggan IC, Robinson KV, Burns CW, Banks JC, Hogg ID (2012) Identifying invertebrate invasions using morphological and molecular analyses: North American Daphnia ‘pulex’ in New Zealand fresh waters. Aquat Invasions 7:585–590

    Article  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Environmental Protection Agency (2014) http://www.epa.gov/greatlakes/basicinfo.html. Accessed 3 Sept 2018

  • Evans NT, Olds BP, Renshaw MA, Turner CR, Li Y, Jerde CL, Mahon AR, Pfrender ME, Lamberti GA, Lodge DM (2016) Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol Ecol Resour 16:29–41

    Article  CAS  PubMed  Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, De Barba M, Gielly L, Lopes CM, Boyer F (2015) Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour 15:543–556

    Article  CAS  PubMed  Google Scholar 

  • Field KG, Samadpour M (2007) Fecal source tracking, the indicator paradigm, and managing water quality. Water Res 41:3517–3538

    Article  CAS  PubMed  Google Scholar 

  • Furlan E, Gleeson D (2017) Improving reliability in environmental DNA detection surveys through enhanced quality control. Mar Freshw Res 68:388–395

    Article  CAS  Google Scholar 

  • Furlan E, Gleeson D, Hardy C, Duncan RP (2015) A framework for estimating the sensitivity of eDNA detection. Mol Ecol Resour 16:641–654

    Article  PubMed  CAS  Google Scholar 

  • Goldberg CS, Pilliod DS, Arkle RS, Waits LP (2011) Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS One 6:e22746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg CS, Sepulveda A, Ray A, Baumgardt J, Waits LP (2013) Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw Sci 32:792–800

    Article  Google Scholar 

  • Griffin DW, Lipp EK, McLaughlin MR, Rose JB (2001) Marine recreation and public health microbiology: quest for the ideal indicator. Bioscience 51:817–826

    Article  Google Scholar 

  • Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biol Conserv 116:195–203

    Article  Google Scholar 

  • Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ; Human Microbiome Consortium, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504

    Article  PubMed  CAS  Google Scholar 

  • Hajibabaei M, Shokralla S, Zhou X, Singer GA, Baird DJ (2011) Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 6:e17497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hänfling B, Handley L, Read DS, Hahn C, Li J, Nichols P, Blackman RC, Oliver A, Winfield IJ (2016) Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol Ecol 25:3101–3119

    Article  PubMed  CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003a) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270(Suppl 1):S96–S99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks BJ, Watson NRN (1985) Seasonal changes in abundance of brown trout (Salmo trutta) and rainbow trout (S. gairdnerii) assessed by drift diving in the Rangitikei River, New Zealand. N Z J Mar Freshw Res 19:1–10

    Article  Google Scholar 

  • Hicks BJ, Brijs J, Daniel A, Morgan DKJ, Ling N (2015) Biomass estimation of invasive fish. In: Collier KJ, Gainger NPJ (eds) New Zealand invasive fish management handbook. The University of Waikato, Hamilton, New Zealand, pp 116–122

    Google Scholar 

  • Hofreiter M, Mead JI, Martin P, Poinar HN (2003) Molecular caving. Curr Biol 13:R693–R695

    Article  CAS  PubMed  Google Scholar 

  • Hogg ID, Larose C, de Lafontaine Y, Doe KG (1998) Genetic evidence for a Hyalella species complex within the Great Lakes-St. Lawrence River drainage basin: implications for ecotoxicology and conservation biology. Can J Zool 76:1134–1152

    Article  Google Scholar 

  • Hogg ID, Stevens MI, Schnabel KE, Chapman MA (2006) Deeply divergent lineages among populations of the widespread New Zealand amphipod Paracalliope fluviatilis revealed using allozyme and mitochondrial DNA analyses. Freshw Biol 51:236–248

    Article  CAS  Google Scholar 

  • Jerde CL, Mahon AR, Chadderton WL, Lodge DM (2011) “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv Lett 4:150–157

    Article  Google Scholar 

  • Jerde CL, Chadderton WL, Mahon AR, Renshaw MA, Corush J, Budny ML, Mysorekar S, Lodge DM (2013) Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Can J Fish Aquat Sci 70:522–526

    Article  CAS  Google Scholar 

  • Laramie MB, Pilliod DS, Goldberg CS (2015) Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol Conserv 183:29–37

    Article  Google Scholar 

  • Lear G, Lewis GD (2009) Impact of catchment land use on bacterial communities within stream biofilms. Ecol Indic 9:848–855

    Article  CAS  Google Scholar 

  • Lindeque PK, Parry HE, Harmer RA et al (2013) Next generation sequencing reveals the hidden diversity of zooplankton assemblages. PLoS One 8:e81327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodge DM, Turner CR, Jerde CL, Barnes MA, Chadderton L, Egan SP, Feder JL, Mahon AR, Pfrender ME (2012) Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Mol Ecol 21:2555–2558

    Article  PubMed  PubMed Central  Google Scholar 

  • Machida R, Hashiguchi Y, Nishida M, Nishida S (2009) Zooplankton diversity analysis through single-gene sequencing of a community sample. BMC Genomics 10:438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahon AR, Jerde CL, Galaska M, Bergner JL, Chadderton WL, Lodge DM, Hunter ME, Nico LG (2013) Validation of eDNA surveillance sensitivity for detection of Asian carp in controlled and field experiments. PLoS One 8:e58316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahon AR, Nathan LR, Jerde CL (2014) Meta-genomic surveillance of invasive species in the bait trade. Conserv Genet Resour 6:563–567

    Article  Google Scholar 

  • McDowall RM (2003) Impacts of introduced salmonids on native galaxiids in New Zealand upland streams: a new look at an old problem. Trans Am Fish Soc 132:229–238

    Article  Google Scholar 

  • McInerney PJ, Rees GN, Gawne B, Suter P, Watson G, Stoffels RJ (2016) Invasive willows drive instream community structure. Freshw Biol 61:1379–1391

    Article  Google Scholar 

  • McIntosh AR, McHugh PA, Dunn NR, Goodman J, Howard SW, Jellyman PG, O’Brien LK, Nyström P, Woodford DJ (2010) The impact of trout on galaxiid fishes in New Zealand. N Z J Ecol 34:195–206

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Mills EL, Leach JH, Carlton JT, Secor CL (1993) Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. J Great Lakes Res 19:1–54

    Article  Google Scholar 

  • Minamoto T, Yamanaka H, Takahara T, Honjo MN, Kawabata Z (2012) Surveillance of fish species composition using environmental DNA. Limnology 13:193–197

    Article  CAS  Google Scholar 

  • Moyer GR, Díaz-Ferguson E, Hill JE, Shea C (2014) Assessing environmental DNA detection in controlled lentic systems. PLoS One 9:e103767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray DC, Bunce M, Cannell BL, Oliver R, Houston J, White NE, Barrero RA, Bellgard MI, Haile J (2011) DNA-based faecal dietary analysis: a comparison of qPCR and high throughput sequencing approaches. PLoS One 6:e2577

    Google Scholar 

  • Nathan LR, Jerde CL, Budny ML, Mahon AR (2014) The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade. Conserv Biol 29:430–439

    Article  PubMed  Google Scholar 

  • National Oceanic and Atmospheric Administration (2014) http://www.glerl.noaa.gov/pr/ourlakes/economy.html. Accessed 3 Dec 2014

  • Nolte V, Pandey RV, Jost S, Medinger R, Ottenwälder B, Boenigk J, Schlötterer C (2010) Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity. Mol Ecol 19:2908–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olds BP, Jerde CL, Renshaw MA et al (2016) Estimating species richness using environmental DNA. Ecol Evol 6:4214–4226

    Article  PubMed  PubMed Central  Google Scholar 

  • Porazinska DL, Sung WAY, Giblin-Davis RM, Thomas WK (2010) Reproducibility of read numbers in high-throughput sequencing analysis of nematode community composition and structure. Mol Ecol Resour 10:666–676

    Article  CAS  PubMed  Google Scholar 

  • Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes 7:355–364

  • Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One 8:e66213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC (2014) The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J Appl Ecol 51:1450–1459

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt BR, Kéry M, Ursenbacher S, Hyman OJ, Collins JP (2013) Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol Evol 4:646–653

    Article  Google Scholar 

  • Scott TM, Rose JB, Jenkins TM, Farrah SR, Lukasik J (2002) Microbial source tracking: current methodology and future directions. Appl Environ Microbiol 68:5796–5803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scriver M, Marinich A, Wilson C, Freeland J (2015) Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquat Bot 122:27–31

    Article  CAS  Google Scholar 

  • Sevilla RG, Diez A, Norén M et al (2007) Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Mol Ecol Notes 7:730–734

    Article  CAS  Google Scholar 

  • Shaw JL, Clarke ALJ, Wedderburn SD, Barnes TC, Weyricha LS, Cooper A (2016) Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol Conserv 197:131–138

    Article  Google Scholar 

  • Sigsgaard EE, Carl H, Møller PR, Thomsen PF (2015) Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol Conserv 183:46–52

    Article  Google Scholar 

  • Spear SF, Groves JD, Williams LA, Waits LP (2015) Using environmental DNA methods to improve detectability in a hellbender (Cryptobranchus alleganiensis) monitoring program. Biol Conserv 183:38–45

    Article  Google Scholar 

  • Stark JD (1993) Performance of the macroinvertebrate community index: effects of sampling method, sample replication, water depth, current velocity, and substratum on index values. N Z J Mar Freshw Res 27:463–478

    Article  Google Scholar 

  • Stewart-Oaten A, Murdoch WW, Parker KR (1986) Environmental impact assessment: “Pseudoreplication” in time? Ecology 67:929–940

    Article  Google Scholar 

  • Takahara T, Minamoto T, Doi H (2015) Effects of sample processing on the detection rate of environmental DNA from the common carp (Cyprinus carpio). Biol Conserv 183:64–69

    Article  Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18

    Article  Google Scholar 

  • Thomsen P, Kielgast JOS, Iversen LL, Wiuf C, Rasmussen M, Gilbert MT, Orlando L, Willerslev E (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573

    Article  CAS  PubMed  Google Scholar 

  • Townsend CR (1996) Invasion biology and ecological impacts of brown trout Salmo trutta in New Zealand. Biol Conserv 78:13–22

    Article  Google Scholar 

  • Valentini A, Taberlet P, Miaud C et al (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol 25:929–942

    Article  CAS  PubMed  Google Scholar 

  • Wilcox TM, Mckelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR, Schwartz MK (2013) Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS One 8:e59520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willerslev E, Cappellini E, Boomsma W et al (2007) Ancient biomolecules from deep ice cores reveal a forested Southern Greenland. Science 317:111–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann ME, Cooke RM, Rothlisberger JD, Rutherford ES, Zhang H, Mason DM, Lodge DM (2014) Use of structured expert judgment to forecast invasions by bighead and silver carp in Lake Erie. Conserv Biol 29:187–197

    Article  PubMed  Google Scholar 

  • Wood SA, Smith KF, Banks J, Tremblay L, Rhodes L, Mountfort D, Cary SC, Pochon X (2013) Molecular tools for environmental monitoring of New Zealand’s aquatic habitats: past, present and the future. N Z J Mar Freshw Res 47:90–119

    Article  Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453

    Article  Google Scholar 

  • Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, Ding Z (2012) Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol 3:613–623

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian D. Hogg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hogg, I.D., Banks, J.C., Woods, S.M. (2018). Biodiversity Genomics: Monitoring Restoration Efforts Using DNA Barcoding and Environmental DNA. In: Hamilton, D., Collier, K., Quinn, J., Howard-Williams, C. (eds) Lake Restoration Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-93043-5_12

Download citation

Publish with us

Policies and ethics

Navigation