Small-Angle X-Ray Scattering to Analyze the Morphological Properties of Nanoparticulated Systems

  • Chapter
  • First Online:
Handbook of Materials Characterization

Abstract

Small-angle X-ray scattering (SAXS) is a powerful technique that uses the scattering of a beam of X-rays to investigate the structure, morphology, and arrangement of submicron dimensions and particularly useful for studying systems at the nanometric scale. Herein, in this chapter book, we will examine the most representative features of several scattering intensity curves acquired from several nanoparticulated systems. We begin with the explanation of the most fundamental concepts behind the SAXS framework, to then introduce the principal features of a scattering pattern. Each section of this chapter is complemented with practical examples, many of which are simulations, while others come from real experimental data taken from real samples synthesized for this purpose in our labs. As an important part of this work, we present two models often used to fit SAXS curves acquired from granular nanoparticle samples, which are the fractal aggregate and the Beaucage models. In this last part of these sections, our goal is to explain how to obtain valuable structural information from systems consisting of either nanoparticles surrounded by liquids or solids. Finally, we present a complete description of the principal components needed to a SAXS instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Notice that high or low resolution refers to those structural properties at atomic or superatomic level, respectively.

  2. 2.

    Experimentally it is not possible to obtain the amplitude and phase of the scattering amplitude \( A\left(\overrightarrow{q}\right) \). Experimental SAXS data allows determining the modulus of \( A\left(\overrightarrow{q}\right) \), but the phase remains unknown.

  3. 3.

    Every detector has a specific saturation value expressed in counts [2].

  4. 4.

    In crystallography it is known as the lattice factor.

References

  1. Feigin, L. A., & Svergun, D. I. (1989). Structure analysis by small-angle X-ray and neutron scattering. New York: Plenum Press.

    Google Scholar 

  2. Schnablegger, H., & Singh, Y. (2013). The SAXS guide. Austria: Anton Paar GmbH.

    Google Scholar 

  3. Li, T., Senesi, A. J., & Lee, B. (2016). Small angle A-ray scattering for nanoparticle research. Chemical Reviews, 116(18), 11128–11180.

    Article  CAS  Google Scholar 

  4. Thiele, E. (1963). Equation of state for hard spheres. The Journal of Chemical Physics, 39(2), 474–479.

    Article  Google Scholar 

  5. Glatter, O., & Kratky, O. (1982). Small-angle X-ray scattering. London: Academic.

    Google Scholar 

  6. Craievich, A. F. (2016). Small-angle X-ray scattering by nanostructured materials. In L. Klein, M. Aparicio, & A. Jitianu (Eds.), Handbook of sol-gel science and technology. Cham: Springer.

    Google Scholar 

  7. Debye, P., & Bueche, A. M. (1949). Scattering by an inhomogeneous solid. Journal of Applied Physics, 20, 51525.

    Article  Google Scholar 

  8. Putnam, C. D., Hammel, M., Hura, G. L., & Tainer, J. A. (2007). X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly Reviews of Biophysics, 40(3), 191–285.

    Article  CAS  Google Scholar 

  9. Hammouda, B. (2008). Probing nanoscale structures – the SANS toolbox. Maryland: Gaithersburg.

    Google Scholar 

  10. Glatter, O. (1977). A new method for the evaluation of small angle scattering data. Journal of Applied Crystallography, 10, 415–421.

    Article  Google Scholar 

  11. Amemiya, Y., & Shinohara, Y. Oral presentation at Cheiron School 2011: Small-angle X-ray scattering basics & applications. Japan: Graduate School of Frontier Sciences, The University of Tokyo.

    Google Scholar 

  12. Sanjeeva Murthy, N. (2016). X-ray diffractions from polymers. In Q. Guo (Ed.), Polymer morphology: Principles, characterization and processing (pp. 29–31). Hoboken: Wiley.

    Google Scholar 

  13. Guinier, A., & Fournet, G. (1955). Small-angle scattering of X-rays. New York: Wiley.

    Google Scholar 

  14. Porod, G. (1982). Chapter 2: General theory. In O. Glatter & O. Kratky (Eds.), Small-angle X-ray scattering. London: Academic.

    Google Scholar 

  15. Roe, R.-J. (2000). Methods of X-ray and neutron scattering in polymer science. Oxford: Oxford University Press.

    Google Scholar 

  16. Hammouda, B. (2010). Analysis of the Beaucage model. Journal of Applied Crystallography, 43, 1474–1478.

    Article  CAS  Google Scholar 

  17. Rivas Rojas, P. C., Tancredi, P., Moscoso Londoño, O., Knobel, M., & Socolovsky, L. M. (2018). Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 451, 688–696.

    Article  CAS  Google Scholar 

  18. Tancredi, P., Rivas Rojas, P. C., Moscoso-Londoño, O., Wolff, U., Neu, V., Damm, C., Rellinghaus, B., Knobel, M., & Socolovsky, L. M. (2017). Synthesis process, size and composition effects of spherical Fe3O4 and FeO@Fe3O4 core/shell nanoparticles. New Journal of Chemestry, 41, 15033–15041.

    Article  CAS  Google Scholar 

  19. Xu, R., Jiang, H., Song, C., Rodriguez, J. A., Huang, Z., Chen, C.-C., Nam, D., Park, J., et al. (2014). Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses. Nature Communications, 5, 4061.

    Article  CAS  Google Scholar 

  20. Barke, I., Hartmann, H., Rupp, D., Flückiger, L., Sauppe, M., Adolph, M., Schorb, S., Bostedt, C., et al. (2015). The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering. Nature Communications, 6, 6187.

    Article  CAS  Google Scholar 

  21. Pedersen, J. (1994). Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions. Journal of Applied Crystallography, 27, 595–608.

    Article  Google Scholar 

  22. Nakamura, K., Kawabata, T., & Mori, Y. (2003). Size distribution analysis of colloidal gold by small angle X-ray scattering and light absorbance. Powder Technology, 131, 120–128.

    Article  CAS  Google Scholar 

  23. Skou, S., Gillilan, R. E., & Ando, N. (2014). Synchrotron-based small-angle X-ray scattering of proteins in solution. Nature Protocols, 9, 1727–1739.

    Article  CAS  Google Scholar 

  24. Goertz, V., Dingenouts, N., Nirschl, H., et al. (2009). Particle & Particle Systems Characterization, 26, 17–24.

    Article  CAS  Google Scholar 

  25. Kohlbrecher, J. (2014). SASfit: A program for fitting simple structural models to small angle scattering data. Paul Scherrer Institute.

    Google Scholar 

  26. Pedersen, J. S. (1997). Analysis of small-angle data from colloids and polymer solutions: Modeling and least-squares fitting. Advance in Colloid and Interface Science, 70, 171–210.

    Article  CAS  Google Scholar 

  27. Khan, L. U., Muraca, D., Brito, H. F., Moscoso-Londono, O., Felinto, M. C. F. C., Pirota, K. R., Teotonio, E. E. S., & Malta, O. L. (2016). Journal of Alloys and Compounds, 686, 453–466.

    Article  CAS  Google Scholar 

  28. Orozco-Henao, J. M., Coral, D. F., Muraca, D., Moscoso-Londono, O., Mendoza Zelis, P., Fernandez van Raap, M. B., Sharma, S. K., Pirota, K. R., & Knobel, M. (2016). The Journal of Physical Chemitry C, 120, 12796–12809.

    Article  CAS  Google Scholar 

  29. Agbabiaka, A., Wiltfong, M., & Park, C. (2013). Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. Journal of Nanoparticles, 2013, 640436.

    Article  Google Scholar 

  30. Müller, J. J., Damaschun, G., & Hübner, G. (1979). Small angle X-ray scattering studies on the structure and symmetry of yeast pyruvate decarboxylase in solution. Acta Biologica et Medica Germanica, 38(1), 1–10.

    Google Scholar 

  31. Pedersen, J. S., Oliveira, C. L. P., Hübschmann, H. B., Arleth, L., Manniche, S., Kirkby, N., & Nielsen, H. M. Structure of immune stimulating complex matrices and immune stimulating complexes in suspension determined by small-angle X-ray scattering. Biophysical Journal, 102(10), 2372–2380.

    Article  CAS  Google Scholar 

  32. Oliveira, C. L. P., Behrens, M. A., Pedersen, J. S., Erlacher, K., Otzen, D., & Pedersen, J. S. Journal of Molecular Biology, 387(1), 147–161.

    Google Scholar 

  33. Moscoso-Londoño, O., Gonzalez, J. S., Muraca, D., Hoppe, C. E., Alvarez, V. A., López-Quintela, A., Socolovsky, L. M., & Pirota, K. R. (2013). European Polymer Journal, 49(2), 279–289.

    Article  Google Scholar 

  34. Moscoso-Londoño, O., Tancredi, P., Muraca, D., Mendoza Zélis, P., Coral, D., Fernández van Raap, M. B., Wolff, U., Neu, V., Damm, C., de Oliveira, C. L. P., Pirota, K. R., Knobel, M., & Socolovsky, L. M. (2017). Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems. Journal of Magnetism and Magnetic Materials, 428, 105–118.

    Article  Google Scholar 

  35. Meiorin, C., Moscoso-Londoño, O., Muraca, D., Socolovsky, L. M., Pirota, K. R., Aranguren, M. I., Knobel, M., & Mosiewicki, M. A. Materials Chemistry and Physics, 175, 81–91.

    Google Scholar 

  36. Baxter, R. J. (1968). Percus-Yevick equation for hard spheres with surface adhesión. The Journal of Chemical Physics, 49(6), 2770–2774.

    Article  CAS  Google Scholar 

  37. Hansen, J. P., & Hayter, J. B. (1982). A rescaled mean spherical approximation structure factor for dilute charged colloidal dispersion. Molecular Physics, 46, 651–656.

    Article  CAS  Google Scholar 

  38. Percus, J. K., & Yevick, G. J. (1958). Analysis of classical statistical mechanics by means of collective coordinates. Physical Review, 110(1), 1–13.

    Article  CAS  Google Scholar 

  39. Rogers, F. J., & Young, D. A. (1984). New, thermodynamically consistent, integral equation for simple fluids. Physical Review A, 30, 999–1007.

    Article  CAS  Google Scholar 

  40. Lee, L. L. (1995). An accurate integral equation theory for hard spheres: Role of the zero-separation theorems in the closure relation. The Journal of Chemical Physics, 103(21), 9388–9396.

    Article  CAS  Google Scholar 

  41. Chen, S.-H., & Teixeira, J. (1986). Structure and fractal dimension of protein-detergent complexes. Physical Review Letters, 57, 2583.

    Article  CAS  Google Scholar 

  42. Moscoso-Londono, O., Carriao, M. S., Cosio-Castaneda, C., Bilovol, V., Martinez Sanchez, R., Lede, E. J., Socolovsky, L. M., & Martinez-Garcia, R. (2013). Materials Research Bulletin, 48, 3474–3478.

    Article  CAS  Google Scholar 

  43. Schaefer, D. W. (1989). Polymers, fractals, and ceramic materials. Science, 243, 1023–1027.

    Article  CAS  Google Scholar 

  44. Thesis. Physics Institute, University of La Plata. (2015).

    Google Scholar 

  45. Teixeira, J. (1988). Small-angle scattering by fractal systems. Journal of Applied Crystallography, 21, 781–785.

    Article  Google Scholar 

  46. Moscoso-Londono, O., Muraca, D., Tancredi, P., Cosio-Castaneda, C., Pirota, K. R., & Socolovsky, L. M. (2014). Physicochemical studies of complex silvermagnetite nanoheterodimers with controlled morphology. The Journal of Physics Chemistry C, 118, 13168–13176.

    Article  CAS  Google Scholar 

  47. Beaucage, G. (1995). Approximations leading to a unified exponential/power-law approach to small-angle scattering. Journal of Applied Crystallography, 28, 717–728.

    Article  CAS  Google Scholar 

  48. Hernández, R., Sacristán, J., Nogales, A., Ezquerra, T. A., & Mijangos, C. (2009). Structural organization of iron oxide nanoparticles synthesized inside hybrid polymer gels derived from alginate studied with small-angle X-ray scattering. Langmuir, 25, 13212–13218.

    Article  Google Scholar 

  49. Socolovsky, L. M., & Moscoso Londoño, O. (2017). Consequences of magnetic interaction phenomena in granular systems. In S. Sharma (Ed.), Complex magnetic nanostructures. Cham: Springer.

    Google Scholar 

  50. Chu, B., & Hsiao, B. S. (2001). Small-angle X-ray scattering of polymers. Chemical Reviews, 101(6), 1727–1762.

    Article  CAS  Google Scholar 

  51. Ritland, H. N., Kaesberg, P., & Beeman, W. W. (1950). Double crystal and slit methods in small angle X-ray scattering. Journal of Applied Physics, 21(8), 838.

    Article  CAS  Google Scholar 

  52. Bonse, U., & Hart, M. (1966). Small angle X-ray scattering by spherical particles of polystyrene and Polyvinyltoluene. Zeitschrift Für Physikalische, 189, 151–162.

    Article  CAS  Google Scholar 

  53. Chu, B., Li, Y., Gao, T., Chua, B., & Ao, T. G. (1992). A Bonse–Hart ultrasmall angle x-ray scattering instrument employing synchrotron and conventional x-ray sources. Review Scientific Instruments, 63, 4128.

    Article  CAS  Google Scholar 

  54. Amemiya, Y. (1997). X-Ray storage-phosphor imaging-plate detectors: High-sensitivity X-ray area detector, In: Academic Press (Ed.), Methods enzymol. 276th ed., Elsevier, (pp. 233–243).

    Google Scholar 

Download references

Acknowledgment

O. M. L., D. M., and M. K. acknowledge FAPESP, Brazil (2014/26672-8, 2011/01235-6 and 2011/02356-11), P. T., P. R., and L. M. S. Thanks to CONICET (Argentina). LNLS/CNPEM is acknowledged for SAXS measurements. LNNano/CNPEM is acknowledged for the use of TEM microscopes. All the authors want to especially thank the developers of the SASfit software, which was used to simulate the SAXS curves presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Moscoso Londoño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Londoño, O.M., Tancredi, P., Rivas, P., Muraca, D., Socolovsky, L.M., Knobel, M. (2018). Small-Angle X-Ray Scattering to Analyze the Morphological Properties of Nanoparticulated Systems. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_2

Download citation

Publish with us

Policies and ethics

Navigation