Translational Research and Genomics Driven Trials in Thyroid Cancer

  • Chapter
  • First Online:
Practical Management of Thyroid Cancer

Abstract

Many advances have been made in the field of thyroid cancer for patients with locally advanced, unresectable and/or metastatic disease. There are now four anti-angiogenic multikinase inhibitors approved for medullary and differentiated thyroid cancer. However, as with other solid tumors, patients develop resistance to these targeted therapies or have contraindications to the approved therapies. Alternatives to the anti-angiogenic class of drugs are needed for these patients, thus, testing other drugs in thyroid cancer will be important in order to continue to advance the field. In May 2018, the FDA approved the combination of dabrafenib plus trametinib for BRAF V600E mutated anaplastic thyroid cancer, but eventually resistance ensues. Also, treatments for non-BRAF mutated patients are in great need. Gaining a better understanding of the mechanisms of resistance to targeted therapy will also be important in order to rationally modify treatment regimens. This chapter focuses on emerging treatments in clinical trials, translational studies that may one day lead to a better understanding of the mechanisms of resistance to targeted therapies and new strategies to identify patients suited for a particular genomic-driven therapy, as these will shape the future directions of thyroid cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brose MS, Schlumberger M, Tahara M, Wirth LJ, Robinson B, Elisei R, et al. Effect of age and lenvatinib treatment on overall survival for patients with 131I-refractory differentiated thyroid cancer in SELECT. J Clin Oncol. 2015;33(suppl):6048.

    Article  Google Scholar 

  2. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.

    Article  PubMed  CAS  Google Scholar 

  3. Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. Sorafenib in locally advanced or metastatic patients with radioactive iodine-refractory differentiated thyroid cancer: the phase III DECISION trial. J Clin Oncol. 2013;31(suppl):4.

    Article  Google Scholar 

  4. Wells SA Jr, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.

    Article  CAS  PubMed  Google Scholar 

  5. Elisei R, Schlumberger MJ, Muller SP, Schoffski P, Brose MS, Shah MH, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31(29):3639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blevins DP, Dadu R, Hu M, Baik C, Balachandran D, Ross W, et al. Aerodigestive fistula formation as a rare side effect of antiangiogenic tyrosine kinase inhibitor therapy for thyroid cancer. Thyroid. 2014;24(5):918–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song E, Song KM, Kim WG, Choi CM. Development of tracheoesophageal fistula after the use of Sorafenib in locally advanced papillary thyroid carcinoma: a case report. Int J Thyroidol. 2016;9(2):210–4.

    Article  Google Scholar 

  8. Lamartina L, Ippolito S, Danis M, Bidault F, Borget I, Berdelou A, et al. Antiangiogenic tyrosine kinase inhibitors: occurrence and risk factors of hemoptysis in refractory thyroid cancer. J Clin Endocrinol Metab. 2016;101(7):2733–41.

    Article  CAS  PubMed  Google Scholar 

  9. Cabanillas ME, Patel A, Danysh BP, Dadu R, Kopetz S, Falchook G. BRAF inhibitors: experience in thyroid cancer and general review of toxicity. Horm Cancer. 2014;6(1):21–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cabanillas ME, Busaidy N, Khan SA, Gunn GB, Dadu R, Rao SN, et al. Molecular diagnostics and anaplastic thyroid carcinoma: the time has come to harvest the high hanging fruit. Intl J Endocr Oncol. 2016;3(3):221–33.

    Article  CAS  Google Scholar 

  11. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–66.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rao SN, Zafereo M, Dadu R, Busaidy NL, Hess K, Cote GJ, et al. Patterns of treatment failure in anaplastic thyroid carcinoma. Thyroid. 2017;27(5):672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goutas N, Vlachodimitropoulos D, Bouka M, Lazaris AC, Nasioulas G, Gazouli M. BRAF and K-RAS mutation in a Greek papillary and medullary thyroid carcinoma cohort. Anticancer Res. 2008;28(1a):305–8.

    PubMed  Google Scholar 

  14. Kasaian K, Wiseman SM, Walker BA, Schein JE, Hirst M, Moore RA, et al. Putative BRAF activating fusion in a medullary thyroid cancer. Cold Spring Harb Mol Case Stud. 2016;2(2):a000729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cho U, Oh WJ, Bae JS, Lee S, Lee YS, Park GS, et al. Clinicopathological features of rare BRAF mutations in Korean thyroid cancer patients. J Korean Med Sci. 2014;29(8):1054–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386(9992):444–51.

    Article  CAS  PubMed  Google Scholar 

  19. Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(9):1272–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cabanillas ME, Busaidy NL, Zafereo M, Waguespack SG, Hu MI, Hofmann MC, et al. Neoadjuvant vemurafenib in patients with locally advanced papillary thyroid cancer (PTC). Eur Thyroid J. 2017;6(suppl 1). abstr OP-06-39.

    Google Scholar 

  21. Shah MH, Wei L, Wirth LJ, Daniels GH, De Souza JA, Timmers CD, et al. Results of randomized phase II trial of dabrafenib versus dabrafenib plus trametinib in BRAF-mutated papillary thyroid carcinoma. J Clin Oncol. 2017;35(suppl):6022.

    Article  Google Scholar 

  22. Rothenberg SM, McFadden DG, Palmer E, Daniels GH, Wirth LJ. Re-differentiation of radioiodine-refractory BRAF V600E-mutant thyroid carcinoma with dabrafenib: a pilot study. J Clin Oncol. 2013;31(suppl):6025.

    Article  Google Scholar 

  23. Rosove MH, Peddi PF, Glaspy JA. BRAF V600E inhibition in anaplastic thyroid cancer. N Engl J Med. 2013;368(7):684–5.

    Article  CAS  PubMed  Google Scholar 

  24. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, et al. Efficacy of dabrafenib (D) and trametinib (T) in patients (pts) with BRAF V600E–mutated anaplastic thyroid cancer (ATC). J Clin Oncol. 2018;35(suppl):6023.

    Google Scholar 

  25. Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised american thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.

    Article  CAS  PubMed  Google Scholar 

  27. Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 2002;13(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  28. Tallini G, Asa SL. RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol. 2001;8(6):345–54.

    Article  CAS  PubMed  Google Scholar 

  29. Unger K, Zitzelsberger H, Salvatore G, Santoro M, Bogdanova T, Braselmann H, et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J Clin Endocrinol Metab. 2004;89(9):4272–9.

    Article  CAS  PubMed  Google Scholar 

  30. Brandhuber BJ, Nanda N, Haas J, Bouhana K, Tuch B, Ebata K, et al. Identification and characterization of highly potent and selective RET kinase inhibitors for the treatment of RET-driven cancers. Clin Cancer Res. 2015;14(12):B192.

    Google Scholar 

  31. Rahal R, Evans EK, Hu W, Maynard M, Fleming P, DiPietro L, et al. The development of potent, selective RET inhibitors that target both wild-type RET and prospectively identified resistance mutations to multi-kinase inhibitors. Clin Cancer Res. 2016;76(14):2641.

    Google Scholar 

  32. Subbiah V. BLU-667 targets RET-altered cancers. Cancer Discov. 2018;8(6):OF8. https://doi.org/10.1158/2159-8290.CD-NB2018-050. Presented at: American Association for Cancer Research Annual Meeting; April 14–18, 2018; Chicago

  33. Drilon A, Subbiah V, Oxnard G, Bauer T, Velcheti V, Lakhani N, et al. A phase 1 study of LOXO-292, a potent and highly selective RET inhibitor, in patients with RET-altered cancers. J Clin Oncol. 2018;36(15):102.

    Google Scholar 

  34. Patel MR, Fakih M, Olszanski AJ, Lockhart AC, Drilon AE, Fu S, et al. A phase 1 dose escalation study of RXDX-105, an oral RET and BRAF inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2016;34(suppl):2574.

    Article  Google Scholar 

  35. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  CAS  Google Scholar 

  36. Butti MG, Bongarzone I, Ferraresi G, Mondellini P, Borrello MG, Pierotti MA. A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics. 1995;28(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  37. Bongarzone I, Vigneri P, Mariani L, Collini P, Pilotti S, Pierotti MA. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin Cancer Res. 1998;4(1):223–8.

    CAS  PubMed  Google Scholar 

  38. Hyman DM, Laetsch TW, Kummar S, DuBois SG, Farago AF, Pappo AS, et al. The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers. J Clin Oncol. 2017;35(Suppl):LBA2501.

    Article  Google Scholar 

  39. Kelly LM, Barila G, Liu P, Evdokimova VN, Trivedi S, Panebianco F, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A. 2014;111(11):4233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Godbert Y, Henriques de Figueiredo B, Bonichon F, Chibon F, Hostein I, Perot G, et al. Remarkable response to Crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol. 2015;33(20):e84–7.

    Article  PubMed  Google Scholar 

  41. Sebolt-Leopold J, Dudley D, Herrera R, Van Becelaere K, Wiland A, Gowan R, et al. Blockade of MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999;5:810–6.

    Article  CAS  PubMed  Google Scholar 

  42. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995;92(17):7686–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer. 2015;15(10):577–92.

    Article  CAS  PubMed  Google Scholar 

  44. Hayes DN, Lucas AS, Tanvetyanon T, Krzyzanowska MK, Chung CH, Murphy BA, et al. Phase II efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements. Clin Cancer Res. 2012;18(7):2056–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS, et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell. 2012;149(2):307–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leonowens C, Pendry C, Bauman J, Young GC, Ho M, Henriquez F, et al. Concomitant oral and intravenous pharmacokinetics of trametinib, a MEK inhibitor, in subjects with solid tumours. Br J Clin Pharmacol. 2014;78(3):524–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Friday BB, Yu C, Dy GK, Smith PD, Wang L, Thibodeau SN, et al. BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res. 2008;68(15):6145–53.

    Article  CAS  PubMed  Google Scholar 

  48. Hatzivassiliou G, Haling JR, Chen H, Song K, Price S, Heald R, et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature. 2013;501(7466):232–6.

    Article  CAS  PubMed  Google Scholar 

  49. Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, Kulkarni SG, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17(5):989–1000.

    Article  CAS  PubMed  Google Scholar 

  50. Lito P, Saborowski A, Yue J, Solomon M, Joseph E, Gadal S, et al. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell. 2014;25(5):697–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Isshiki Y, Kohchi Y, Iikura H, Matsubara Y, Asoh K, Murata T, et al. Design and synthesis of novel allosteric MEK inhibitor CH4987655 as an orally available anticancer agent. Bioorg Med Chem Lett. 2011;21(6):1795–801.

    Article  CAS  PubMed  Google Scholar 

  52. Nagarajah J, Le M, Knauf JA, Ferrandino G, Montero-Conde C, Pillarsetty N, et al. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine. J Clin Invest. 2016;126(11):4119–24.

    Google Scholar 

  53. Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121(12):4700–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hoeflich KP, O’Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, et al. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res. 2009;15(14):4649–64.

    Article  CAS  PubMed  Google Scholar 

  56. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14(12):1351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pitts TM, Newton TP, Bradshaw-Pierce EL, Addison R, Arcaroli JJ, Klauck PJ, et al. Dual pharmacological targeting of the MAP kinase and PI3K/mTOR pathway in preclinical models of colorectal cancer. PLoS One. 2014;9(11):e113037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jokinen E, Koivunen JP. MEK and PI3K inhibition in solid tumors: rationale and evidence to date. Ther Adv Med Oncol. 2015;7(3):170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lim SM, Chang H, Yoon MJ, Hong YK, Kim H, Chung WY, et al. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann Oncol. 2013;24(12):3089–94.

    Article  CAS  PubMed  Google Scholar 

  60. Schneider TC, de Wit D, Links TP, van Erp NP, van der Hoeven JJ, Gelderblom H, et al. Everolimus in patients with advanced follicular-derived thyroid cancer: results of a phase II clinical trial. J Clin Endocrinol Metab. 2017;102(2):698–707.

    PubMed  Google Scholar 

  61. Hanna GJ, Busaidy NL, Chau NG, Wirth LJ, Barletta JA, Calles A, et al. Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: a phase II study. Clin Cancer Res. 2018;24(7):1546–53.

    Google Scholar 

  62. Wagle N, Grabiner BC, Van Allen EM, Amin-Mansour A, Taylor-Weiner A, Rosenberg M, et al. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N Engl J Med. 2014;371(15):1426–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gibson WJ, Ruan DT, Paulson VA, Barletta JA, Hanna GJ, Kraft S, et al. Genomic heterogeneity and exceptional response to dual pathway inhibition in anaplastic thyroid cancer. Clin Cancer Res. 2017;23(9):2367–73.

    Article  CAS  PubMed  Google Scholar 

  64. Axelrod MJ, Gordon V, Mendez RE, Leimgruber SS, Conaway MR, Sharlow ER, et al. p70S6 kinase is a critical node that integrates HER-family and PI3 kinase signaling networks. Cell Signal. 2014;26(8):1627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Malaguarnera R, Chen KY, Kim TY, Dominguez JM, Voza F, Ouyang B, et al. Switch in signaling control of mTORC1 activity after oncoprotein expression in thyroid cancer cell lines. J Clin Endocrinol Metab. 2014;99(10):E1976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brunton VG, Frame MC. Src and focal adhesion kinase as therapeutic targets in cancer. Curr Opin Pharmacol. 2008;8(4):427–32.

    Article  CAS  PubMed  Google Scholar 

  67. Michailidi C, Giaginis C, Stolakis V, Alexandrou P, Klijanienko J, Delladetsima I, et al. Evaluation of FAK and Src expression in human benign and malignant thyroid lesions. Pathol Oncol Res. 2010;16(4):497–507.

    Article  CAS  PubMed  Google Scholar 

  68. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995;55(13):2752–5.

    CAS  PubMed  Google Scholar 

  69. Owens LV, Xu L, Dent GA, Yang X, Sturge GC, Craven RJ, et al. Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. Ann Surg Oncol. 1996;3(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  70. Schweppe RE, Kerege AA, French JD, Sharma V, Grzywa R, Haugen BR. Inhibition of Src with AZD0530 reveals the Src-focal adhesion kinase complex as a novel therapeutic target in papillary and anaplastic thyroid cancer. J Clin Endocrinol Metab. 2009;94:2199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chan CM, **g X, Pike LA, Zhou Q, Lim DJ, Sams SB, et al. Targeted inhibition of SRC kinase with dasatinib blocks thyroid cancer growth and metastasis. Clin Cancer Res. 2012;18(13):3580–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Beadnell TC, Mishall KM, Zhou Q, Riffert SM, Wuensch KE, Kessler BE, et al. The mitogen-activated protein kinase pathway facilitates resistance to the Src inhibitor Dasatinib in thyroid cancer. Mol Cancer Ther. 2016;15(8):1952–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chan D, Tyner JW, Chng WJ, BI C, Okamoto R, Said J, et al. Effect of dasatinib against thyroid cancer cell lines in vitro and a xenograft model in vivo. Oncol Lett. 2012;3:807–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim WG, Guigon CJ, Fozzatti L, Park JW, Lu C, Willingham MC, et al. SKI-606, an Src inhibitor, reduces tumor growth, invasion, and distant metastasis in a mouse model of thyroid cancer. Clin Cancer Res. 2012;18(5):1281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Roskoski R Jr. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res. 2015;94:9–25.

    Article  CAS  PubMed  Google Scholar 

  76. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305(5682):399–401.

    Article  CAS  PubMed  Google Scholar 

  77. Herold CI, Chadaram V, Peterson BL, Marcom PK, Hopkins J, Kimmick GG, et al. Phase II trial of dasatinib in patients with metastatic breast cancer using real-time pharmacodynamic tissue biomarkers of Src inhibition to escalate dosing. Clin Cancer Res. 2011;17(18):6061–70.

    Article  CAS  PubMed  Google Scholar 

  78. Yu EY, Wilding G, Posadas E, Gross M, Culine S, Massard C, et al. Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 2009;15(23):7421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sen B, Peng S, Tang X, Erickson HS, Galindo H, Mazumdar T, et al. Kinase-impaired BRAF mutations in lung cancer confer sensitivity to dasatinib. Sci Transl Med. 2012;4(136):136–70.

    Article  CAS  Google Scholar 

  80. Smith VE, Read ML, Turnell AS, Watkins RJ, Watkinson JC, Lewy GD, et al. A novel mechanism of sodium iodide symporter repression in differentiated thyroid cancer. J Cell Sci. 2009;122(Pt 18):3393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith VE, Sharma N, Watkins RJ, Read ML, Ryan GA, Kwan PP, et al. Manipulation of PBF/PTTG1IP phosphorylation status; a potential new therapeutic strategy for improving radioiodine uptake in thyroid and other tumors. J Clin Endocrinol Metab. 2013;98(7):2876–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  83. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61.

    Article  CAS  PubMed  Google Scholar 

  84. Cunha LL, Marcello MA, Morari EC, Nonogaki S, Conte FF, Gerhard R, et al. Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation. Endocr Relat Cancer. 2013;20(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  85. Angell TE, Lechner MG, Jang JK, Correa AJ, LoPresti JS, Epstein AL. BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid. 2014;24(9):1385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ahn S, Kim TH, Kim SW, Ki CS, Jang HW, Kim JS, et al. Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr Relat Cancer. 2017;24(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  87. Bastman JJ, Serracino HS, Zhu Y, Koenig MR, Mateescu V, Sams SB, et al. Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer. J Clin Endocrinol Metab. 2016;101(7):2863–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chowdhury S, Veyhl J, Jessa F, Polyakova O, Alenzi A, MacMillan C, et al. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 2016;7(22):32318–28.

    Article  PubMed  PubMed Central  Google Scholar 

  89. French JD, Bible K, Spitzweg C, Haugen BR, Ryder M. Leveraging the immune system to treat advanced thyroid cancers. Lancet Diabetes Endocrinol. 2017;5(6):469–81.

    Article  CAS  PubMed  Google Scholar 

  90. French JD, Kotnis GR, Said S, Raeburn CD, McIntyre RC Jr, Klopper JP, et al. Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. J Clin Endocrinol Metab. 2012;97(6):E934–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Severson JJ, Serracino HS, Mateescu V, Raeburn CD, McIntyre RC Jr, Sams SB, et al. PD-1+Tim-3+ CD8+ T lymphocytes display varied degrees of functional exhaustion in patients with regionally metastatic differentiated thyroid cancer. Cancer Immunol Res. 2015;3(6):620–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. French JD, Weber ZJ, Fretwell DL, Said S, Klopper JP, Haugen BR. Tumor-associated lymphocytes and increased FoxP3+ regulatory T cell frequency correlate with more aggressive papillary thyroid cancer. J Clin Endocrinol Metab. 2010;95(5):2325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mehnert JM, Varga A, Brose M, Aggarwal RR, Lin C-C, Prawira A, de Braud F, Tamura K, Doi T, Piha-Paul SA, Gilbert J, Saraf S, Thanigaimani P, Cheng JD, Keam B. Pembrolizumab for advanced papillary or follicular thyroid cancer: preliminary results from the phase 1b KEYNOTE-028 study. J Clin Oncol. 2016;34(suppl):6091.

    Article  Google Scholar 

  94. Chintakuntlawar AV, Rumilla KM, Smith CY, Jenkins SM, Foote RL, Kasperbauer JL, et al. Expression of PD-1 and PD-L1 in anaplastic thyroid cancer patients treated with multimodal therapy: results from a retrospective study. J Clin Endocrinol Metab. 2017;102(6):1943–50.

    Article  PubMed  Google Scholar 

  95. Wu H, Sun Y, Ye H, Yang S, Lee SL. de las Morenas a. Anaplastic thyroid cancer: outcome and the mutation/expression profiles of potential targets. Pathol Oncol Res. 2015;21(3):695–701.

    Article  CAS  PubMed  Google Scholar 

  96. Dadu R, Para Cuentas E, Rodriguez Canales J, Wistuba I, Zhou S, Williams M, et al. Anaplastic thyroid cancer is a hot immunogenic environment: immunoprofiling of a large cohort of ATC tumors. Thyroid. 2016;26(suppl. 1):A4–5. Presented at the 86th Annual Meeting of the American Thyroid Association, Denver, CO.

    Google Scholar 

  97. Brauner E, Gunda V, Vanden Borre P, Zurakowski D, Kim YS, Dennett KV, et al. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer. Oncotarget. 2016;7(13):17194–211.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Papewalis C, Wuttke M, Jacobs B, Domberg J, Willenberg H, Baehring T, et al. Dendritic cell vaccination induces tumor epitope-specific Th1 immune response in medullary thyroid carcinoma. Hormone Metab Res. 2008;40(2):108–16.

    Article  CAS  Google Scholar 

  99. Bachleitner-Hofmann T, Friedl J, Hassler M, Hayden H, Dubsky P, Sachet M, et al. Pilot trial of autologous dendritic cells loaded with tumor lysate(s) from allogeneic tumor cell lines in patients with metastatic medullary thyroid carcinoma. Oncol Rep. 2009;21(6):1585–92.

    Article  CAS  PubMed  Google Scholar 

  100. Kraeber-Bodere F, Rousseau C, Bodet-Milin C, Ferrer L, Faivre-Chauvet A, Campion L, et al. Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. Journal of nuclear medicine : official publication. Soc Nucl Med. 2006;47(2):247–55.

    CAS  Google Scholar 

  101. Chatal JF, Campion L, Kraeber-Bodere F, Bardet S, Vuillez JP, Charbonnel B, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French endocrine tumor group. J Clin Oncol. 2006;24(11):1705–11.

    Article  CAS  PubMed  Google Scholar 

  102. Bongiovanni M, Rebecchini C, Saglietti C, Bulliard JL, Marino L, de Leval L, et al. Very low expression of PD-L1 in medullary thyroid carcinoma. Endocr Relat Cancer. 2017;24(6):L35–L8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dadu R, Canales JR, Wistuba I, Tian W, Lui H, Grubbs EG, Cote GJ, Ray G, Williams M, Cabanillas ME. Immune markers in medullary thyroid cancer (MTC) and their clinical significance. Thyroid. 2015;25(1):491.

    Google Scholar 

  104. Peng SL, Saunders L, Bheddah S, Williams S, Aggarwal RR, Shea JE, et al. Metastatic melanoma, glioblastoma and high-grade extrapulmonary neuroendocrine carcinomas (NECs) as novel indications for rovalpituzumab tesirine: a delta-like protein 3 (DLL3)-targeted antibody-drug conjugate (ADC). J Clin Oncol. 2016;34(suppl):11611.

    Article  Google Scholar 

  105. Dadu R, Shah K, Busaidy NL, Waguespack SG, Habra MA, Ying AK, et al. Efficacy and tolerability of vemurafenib in patients with BRAF(V600E) -positive papillary thyroid cancer: M.D. Anderson cancer Center off label experience. J Clin Endocrinol Metab. 2015;100(1):E77–81.

    Article  CAS  PubMed  Google Scholar 

  106. Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid. 2015;25(1):71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim KB, Cabanillas ME, Lazar AJ, Williams MD, Sanders DL, Ilagan JL, et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF(V600E) mutation. Thyroid. 2013;23(10):1277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wagle N, Van Allen EM, Treacy DJ, Frederick DT, Cooper ZA, Taylor-Weiner A, et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov. 2014;4(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  109. Fofaria NM, Frederick DT, Sullivan RJ, Flaherty KT, Srivastava SK. Overexpression of Mcl-1 confers resistance to BRAFV600E inhibitors alone and in combination with MEK1/2 inhibitors in melanoma. Oncotarget. 2015;6(38):40535–56.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wagenaar TR, Ma L, Roscoe B, Park SM, Bolon DN, Green MR. Resistance to vemurafenib resulting from a novel mutation in the BRAFV600E kinase domain. Pigment Cell Melanoma Res. 2014;27(1):124–33.

    Article  CAS  PubMed  Google Scholar 

  112. Lidsky M, Antoun G, Speicher P, Adams B, Turley R, Augustine C, et al. Mitogen-activated protein kinase (MAPK) hyperactivation and enhanced NRAS expression drive acquired vemurafenib resistance in V600E BRAF melanoma cells. J Biol Chem. 2014;289(40):27714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483(7387):100–3.

    Article  CAS  PubMed  Google Scholar 

  114. Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP, et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012;2(3):227–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sanchez-Laorden B, Viros A, Girotti MR, Pedersen M, Saturno G, Zambon A, et al. BRAF inhibitors induce metastasis in RAS mutant or inhibitor-resistant melanoma cells by reactivating MEK and ERK signaling. Sci Signal. 2014;7(318):ra30.

    Article  PubMed  CAS  Google Scholar 

  116. Yadav V, Zhang X, Liu J, Estrem S, Li S, Gong XQ, et al. Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J Biol Chem. 2012;287(33):28087–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jiang CC, Lai F, Thorne RF, Yang F, Liu H, Hersey P, et al. MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin Cancer Res. 2011;17(4):721–30.

    Article  CAS  PubMed  Google Scholar 

  118. Atefi M, von Euw E, Attar N, Ng C, Chu C, Guo D, et al. Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS One. 2011;6(12):e28973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Greger JG, Eastman SD, Zhang V, Bleam MR, Hughes AM, Smitheman KN, et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther. 2012;11(4):909–20.

    Article  CAS  PubMed  Google Scholar 

  120. Delmas A, Cherier J, Pohorecka M, Medale-Giamarchi C, Meyer N, Casanova A, et al. The c-Jun/RHOB/AKT pathway confers resistance of BRAF-mutant melanoma cells to MAPK inhibitors. Oncotarget. 2015;6(17):15250–64.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 2012;487(7408):505–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Miao B, Ji Z, Tan L, Taylor M, Zhang J, Choi HG, et al. EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov. 2015;5(3):274–87.

    Article  CAS  PubMed  Google Scholar 

  124. Monsma DJ, Cherba DM, Eugster EE, Dylewski DL, Davidson PT, Peterson CA, et al. Melanoma patient derived xenografts acquire distinct Vemurafenib resistance mechanisms. Am J Cancer Res. 2015;5(4):1507–18.

    PubMed  PubMed Central  Google Scholar 

  125. Kopetz S, Desai J, Chan E, Hecht JR, O’Dwyer PJ, Maru D, et al. Phase II pilot study of Vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol. 2015;33(34):4032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011;480(7377):387–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468(7326):968–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 2013;3(5):520–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Byeon HK, Na HJ, Yang YJ, Kwon HJ, Chang JW, Ban MJ, et al. C-met-mediated reactivation of PI3K/AKT signaling contributes to insensitivity of BRAF(V600E) mutant thyroid cancer to BRAF inhibition. Mol Carcinog. 2016;55(11):1678–87.

    Article  CAS  PubMed  Google Scholar 

  130. Duquette M, Sadow PM, Husain A, Sims JN, Antonello ZA, Fischer AH, et al. Metastasis-associated MCL1 and P16 copy number alterations dictate resistance to vemurafenib in a BRAFV600E patient-derived papillary thyroid carcinoma preclinical model. Oncotarget. 2015;6(40):42445–67.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Danysh BP, Rieger EY, Sinha DK, Evers CV, Cote GJ, Cabanillas ME, et al. Long-term vemurafenib treatment drives inhibitor resistance through a spontaneous KRAS G12D mutation in a BRAF V600E papillary thyroid carcinoma model. Oncotarget. 2016;7(21):30907–23.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Costa AM, Herrero A, Fresno MF, Heymann J, Alvarez JA, Cameselle-Teijeiro J, et al. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol. 2008;68(4):618–34.

    Article  CAS  Google Scholar 

  133. Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat Med. 2013;19(11):1401–9.

    Article  CAS  PubMed  Google Scholar 

  134. Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov. 2014;13(12):928–42.

    Article  CAS  PubMed  Google Scholar 

  135. Morris EJ, Jha S, Restaino CR, Dayananth P, Zhu H, Cooper A, et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 2013;3(7):742–50.

    Article  CAS  PubMed  Google Scholar 

  136. Hayes TK, Neel NF, Hu C, Gautam P, Chenard M, Long B, et al. Long-term ERK inhibition in KRAS-mutant pancreatic cancer is associated with MYC degradation and senescence-like growth suppression. Cancer Cell. 2016;29(1):75–89.

    Article  CAS  PubMed  Google Scholar 

  137. Jha S, Morris EJ, Hruza A, Mansueto MS, Schroeder G, Arbanas J, et al. Dissecting therapeutic resistance to ERK inhibition. Mol Cancer Ther. 2016;15(4):548–59.

    Article  CAS  PubMed  Google Scholar 

  138. Wong DJ, Robert L, Atefi MS, Lassen A, Avarappatt G, Cerniglia M, et al. Antitumor activity of the ERK inhibitor SCH772984 [corrected] against BRAF mutant, NRAS mutant and wild-type melanoma. Mol Cancer. 2014;13:194.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Akeno-Stuart N, Croyle M, Knauf JA, Malaguarnera R, Vitagliano D, Santoro M, et al. The RET kinase inhibitor NVP-AST487 blocks growth and calcitonin gene expression through distinct mechanisms in medullary thyroid cancer cells. Cancer Res. 2007;67(14):6956–64.

    Article  CAS  PubMed  Google Scholar 

  140. Dadu R, Shah K, Busaidy NL, Waguespack SG, Habra MA, Ying AK, et al. Efficacy and tolerability of Vemurafenib in patients with BRAF -positive papillary thyroid cancer: M.D. Anderson cancer Center off label experience. J Clin Endocrinol Metab. 2014;100(1):E77–81. jc20142246.

    Article  PubMed Central  CAS  Google Scholar 

  141. Leung F, Kulasingam V, Diamandis EP, Hoon DS, Kinzler K, Pantel K, et al. Circulating tumor DNA as a cancer biomarker: fact or fiction? Clin Chem. 2016;62(8):1054–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.

    Article  CAS  PubMed  Google Scholar 

  143. Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38.

    Article  CAS  PubMed  Google Scholar 

  144. Eng C, Mulligan LM, Healey CS, Houghton C, Frilling A, Raue F, et al. Heterogeneous mutation of the RET proto-oncogene in subpopulations of medullary thyroid carcinoma. Cancer Res. 1996;56(9):2167–70.

    CAS  PubMed  Google Scholar 

  145. Romei C, Ciampi R, Tacito A, Casella F, Ugolini C, Porta M, et al. Genetic heterogeneity of medullary thyroid carcinoma. Endocr Abstr. 2016;40:P1.

    Google Scholar 

  146. Melo M, Gaspar da Rocha A, Batista R, Vinagre J, Martins MJ, Costa G, et al. TERT, BRAF, and NRAS in primary thyroid cancer and metastatic disease. J Clin Endocrinol Metab. 2017;102(6):1898–907.

    Article  PubMed  Google Scholar 

  147. Pupilli C, Pinzani P, Salvianti F, Fibbi B, Rossi M, Petrone L, et al. Circulating BRAFV600E in the diagnosis and follow-up of differentiated papillary thyroid carcinoma. J Clin Endocrinol Metab. 2013;98(8):3359–65.

    Article  CAS  PubMed  Google Scholar 

  148. Chuang TC, Chuang AY, Poeta L, Koch WM, Califano JA, Tufano RP. Detectable BRAF mutation in serum DNA samples from patients with papillary thyroid carcinomas. Head Neck. 2010;32(2):229–34.

    PubMed  Google Scholar 

  149. Evers C, Duose DY, Meenakshi M, Hai T, Houston MR, Hu PC, et al. Liquid biopsy: comparison of mutation detection methods for measurement of RET M918T circulating cell-free DNA in medullary thyroid cancer patients. Cancer Genet. 2016;209:287 a7.

    Article  Google Scholar 

  150. Sandulache VC, Williams MD, Lai SY, Lu C, William WN, Busaidy NL, et al. Real-time genomic characterization utilizing circulating cell-free DNA in patients with anaplastic thyroid carcinoma. Thyroid. 2017;27(1):81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lubitz CC, Parangi S, Holm TM, Bernasconi MJ, Schalck AP, Suh H, et al. Detection of circulating BRAF(V600E) in patients with papillary thyroid carcinoma. J Mol Diagn. 2016;18(1):100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria E. Cabanillas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cabanillas, M.E., Schweppe, R.E., Dadu, R., Cote, G.J., Beadnell, T.C., Hofmann, M.C. (2018). Translational Research and Genomics Driven Trials in Thyroid Cancer. In: Mallick, U.K., Harmer, C. (eds) Practical Management of Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-91725-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91725-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91724-5

  • Online ISBN: 978-3-319-91725-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation