The Burgers–Hilbert Equation

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 237))

Abstract

The Burgers–Hilbert equation consists of an inviscid Burgers equation with a linear Hilbert-transform source term. We explain how the equation arises as a model for waves on a vorticity discontinuity and surface waves with constant frequency. We survey various results about the Burger–Hilbert equation, including ones on singularity formation, shock structure, weak solutions, and the enhanced life span of small, smooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See [1] for a similar example involving an application of functional methods to the inviscid Burger’s equation.

References

  1. S. Alinhac, Blowup for Nonlinear Hyperbolic Equations (Birkhäuser, Boston, 1995)

    Chapter  Google Scholar 

  2. J. Biello, Hunter J.K: Nonlinear Hamiltonian waves with constant frequency and surface waves on vorticity discontinuities. Comm. Pure Appl. Math. 63, 303–336 (2009)

    MathSciNet  Google Scholar 

  3. J. Biello, J.K. Hunter, unpublished

    Google Scholar 

  4. A. Bressan, T. Zhang, Piecewise smooth solutions to the Burgers-Hilbert equations. Comm. Math. Sci. 15, 165–184 (2017)

    Article  MathSciNet  Google Scholar 

  5. A. Bressan, K.T. Nguyen, Global existence of weak solutions for the Burgers-Hilbert equation. SIAM J. Math. Anal. 46, 2884–2904 (2014)

    Article  MathSciNet  Google Scholar 

  6. A. Castro, D. Córdoba, F. Gancedo, Singularity formation for a surface wave model. Nonlinearity 23, 2835–2847 (2010)

    Article  MathSciNet  Google Scholar 

  7. J.Y. Chemin, Persistance de structures gomtriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. 26, 517–542 (1993)

    Article  MathSciNet  Google Scholar 

  8. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th edn. (Springer-Verlag, Heidelberg, 2016)

    Google Scholar 

  9. D.G. Dritschel, The repeated filamentation of two-dimensional vorticity interfaces. J. Fluid Mech. 194, 511–547 (1988)

    Article  MathSciNet  Google Scholar 

  10. D.G. Dritschel, Contour dynamics and contour surgery. Comput. Phys. Rep. 10, 77–146 (1989)

    Article  Google Scholar 

  11. J.K. Hunter, Numerical solution of some nonlinear dispersive wave equations. Lect. Appl. Math. 26, 301–316 (1990)

    Google Scholar 

  12. M. Ifrim, J.K. Hunter, Enhanced life span of smooth solutions of a Burgers-Hilbert equation. SIAM J. Math. Anal. 44, 2039–2052 (2012)

    Article  MathSciNet  Google Scholar 

  13. J.K. Hunter, M. Ifrim, D. Tataru, Two dimensional water waves in holomorphic coordinates. Comm. Math. Phys. 346, 483–552 (2016)

    Article  MathSciNet  Google Scholar 

  14. J.K. Hunter, M. Ifrim, D. Tataru, T.K. Wong, Long time solutions for a Burgers-Hilbert equation via a modified energy method. Proc. Am. Math. Soc. 143, 3407–3412 (2015)

    Article  MathSciNet  Google Scholar 

  15. M. Ifrim, Normal form transformations for Quasilinear wave equations. Thesis (Ph.D.), University of California, Davis, 2012

    Google Scholar 

  16. J. Marsden, A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Phys. D 7, 305–323 (1983)

    Article  MathSciNet  Google Scholar 

  17. R.L. Pego, Some explicit resonating waves in weakly nonlinear gas dynamics. Stud. Appl. Math. 79, 263–270 (1988)

    Article  MathSciNet  Google Scholar 

  18. L. Rayleigh, On the stability or instability of certain fluid motions. Proc. Lond. Math. Soc. 11, 57 (1880)

    MathSciNet  MATH  Google Scholar 

  19. L. Rayleigh, On the propagation of waves upon the plane surface separating two portions of fluid of different vorticities. Proc. Lond. Math. Soc. 27, 13–18 (1895)

    Article  MathSciNet  Google Scholar 

  20. J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations. Comm. Pure Appl. Math. 38, 685–696 (1985)

    Article  MathSciNet  Google Scholar 

  21. M. Shefter, R.R. Rosales, Quasiperiodic solutions in weakly nonlinear gas dynamics. I. Numerical results in the inviscid case. Stud. Appl. Math. 103, 279–337 (1999)

    Article  MathSciNet  Google Scholar 

  22. E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. I (Springer-Verlag, New York, 1986)

    Chapter  Google Scholar 

Download references

Acknowledgements

Supported by the NSF under grant number 1616988.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Hunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hunter, J.K. (2018). The Burgers–Hilbert Equation. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_3

Download citation

Publish with us

Policies and ethics

Navigation