Functional Diversity in Plants: Implications for Conservation Issues of the Mexican Biodiversity

  • Chapter
  • First Online:
Mexican Natural Resources Management and Biodiversity Conservation

Abstract

In this chapter, we explore the functional diversity concept and its importance in several ecological issues, especially maintenance of ecosystem services and conservation. We consider that Mexico’s species megadiversity should be reflected into a high functional diversity. However, our knowledge on this issue is still limited. Interest in the functional diversity approach has just increased in Mexico. Despite that, since the 1970s, ecophysiological research in Mexican ecosystems has had important pioneer contributions to our knowledge on functional traits in plants and its ecological importance. In this chapter, we review some case studies describing our knowledge of plant physiological diversity in different ecosystems, as examples of the high functional diversity in Mexico. Unfortunately anthropogenic disturbance is increasingly affecting species biodiversity, in particular the more vulnerable species and ecosystems. Increasing research on the functional traits of Mexican ecosystems will provide important information about species function at the ecosystem level and species vulnerability in the context of human disturbance and/or climatic change. Studies focused in functional diversity as an important component of biodiversity will provide us a solid base for planning on conservation decisions, restoration programs, and maintenance of ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams WW III, Zarter CR, Mueh KE, Amiard VSE, Demmig-Adams B (2008) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, WWIII A, Matto A (eds) Photoprotection, photoinhibition, gene regulation and environment. Springer, Berlin, pp 49–64

    Google Scholar 

  • Andrade JL (2003) Dew deposition on epiphytic bromeliad leaves: an important event in a Mexican tropical dry deciduous forest. J Trop Ecol 19:479–488

    Article  Google Scholar 

  • Andrade JL, Rengifo E, Ricalde MF, Simá JL, Cervera JC, Vargas-Soto G (2006) Microambientes de luz, crecimiento y fotosíntesis de la pitahaya (Hylocereus undatus) en un agrosistema de Yucatán, México. Agrociencia 40:687–697

    Google Scholar 

  • Andrade JL, de la Barrera E, Reyes-García C, Ricalde MF, Vargas-Soto G, Cervera JC (2007) El metabolismo ácido de las crasuláceas: diversidad, fisiología ambiental y productividad. Bol Soc Bot Mex 81:37–51

    Google Scholar 

  • Andrade JL, Cervera JC, Graham EA (2009) Microenvironments, water relations and productivity of CAM plants. In: de la Barrera E, Smith WK (eds) Perspectives in biophysical plant ecophysiology: a tribute to Park S Nobel. Universidad Nacional Autónoma de México, Mexico, pp 95–120

    Google Scholar 

  • Archer SR, Predick KI (2008) Climate change and ecosystems of the Southwestern United States. Rangelands 30:23–28

    Article  Google Scholar 

  • Archer S, Schimel DS, Holland EA (1995) Mechanisms of shrubland expansion: land use, climate or CO2? Clim Chang 29:91–99

    Article  Google Scholar 

  • Arens NC, Sanchez-Baracaldo PS (1998) Distribution of tree ferns (Cyatheaceae) across the succesional mosaic in an Andean cloud forest, Nariño, Colombia. Am Fern J 88:60–71

    Article  Google Scholar 

  • Barros A, Salinero C, Vela P, Sainz MJ (2008) Método rápido para la propagación de helechos ornamentales. Actas Hortic 52:1–5

    Google Scholar 

  • Benzing DH (1990) Vascular epiphytes general biology and related biota. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bravo-Peña LC, Doode-Matsumoto S, Castellanos-Villegas AE, Espejel-Carbajal I (2010) Políticas rurales y pérdida de cobertura vegetal Elementos para reformular instrumentos de fomento agropecuario relacionados con la apertura de praderas ganaderas. Región Soc 22:3–35 doi:1870–3925

    Google Scholar 

  • Brenner JC (2011) Pasture conversion, private ranchers, and the invasive exotic Buffelgrass (Pennisetum ciliare) in Mexico’s Sonoran Desert. Ann Assoc Am Geogr 101:84–106. https://doi.org/10.1080/000456082010518040

    Article  Google Scholar 

  • Buffington LC, Herbel CH (1965) Vegetational changes on a semidesert grassland range from 1958 to 1963. Ecol Monogr 35:139–164

    Article  Google Scholar 

  • Bystriakova N, Bader A, Coomes D (2011) Long-term fern dynamics linked to disturbance and shade tolerance. J of Veg Sci 22: 72–44

    Google Scholar 

  • Cach-Pérez MJ, Andrade JL, Chilpa-Galván N, Tamayo-Chim M, Orellana R, Reyes-García C (2013) Climatic and structural factors influencing epiphytic bromeliad community assemblage along a gradient of water-limited environments in the Yucatan Peninsula, Mexico. Trop Conserv Sci 6:283–302

    Article  Google Scholar 

  • Cach-Pérez MJ, Andrade JL, Cetzal-Ix W, Reyes-García C (2016) Environmental influence on inter- and intraspecific variation in density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula. Bot J Linn Soc 181:441–458

    Article  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087

    Article  Google Scholar 

  • Callaway RM, Kikodze D, Chiboshvili M, Khetsuriani L (2005) Unpalatable plants protect neighbors from grazing and increase plant community diversity. Ecology 86:1856–1862

    Article  Google Scholar 

  • Carmona CP, de Bello F, Mason NWH, Lepš L (2018) Traits without borders: integrating functional diversity across scales. Trends Ecol Evol 31:382–394. https://doi.org/10.1016/j.tree.2016.02.003

    Article  Google Scholar 

  • Castellanos AE (1991) Photosynthesis and gas exchange of vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 171–214

    Google Scholar 

  • Castellanos AE, Tinoco-Ojanguren C, Molina-Freaner FE (1999) Microenvironmental heterogeneity and space utilization by desert vines within their host trees. Ann Bot 84:145–153

    Article  Google Scholar 

  • Castellanos AE, Yanes G, Valdéz-Zamudio D (2002) Drought – tolerant exotic buffel – grass and desertification. In: Tellman B (ed) Weeds across borders. Arizona-Sonora Desert Museum, Tucson

    Google Scholar 

  • Castellanos AE, Bravo LC, Koch GW, Llano JM, Lopez D, Mendez R, Rodriguez JC, Romo JR, Sisk T, Yanes G (2010) Impactos Ecologicos por el Uso del Terreno en el Funcionamiento de Ecosistemas Aridos Semi-Aridos de Sonora. In: Molina-Freaner F, Van Devender TR (eds) Diversidad Biologica del Estado de Sonora. CONABIO – UNAM, México, pp 157–186

    Google Scholar 

  • Castellanos AE, Celaya-Michel H, Rodríguez JC, Wilcox BP (2016) Ecohydrological changes in semiarid ecosystems transformed from Shrubland to Buffelgrass savanna. Ecohydrology 9:1663–1674. https://doi.org/10.1002/eco1756

    Article  Google Scholar 

  • Celaya-Michel H, Castellanos-Villegas AE (2011) Mineralización de nitrógeno en el suelo de zonas áridas y semiárida. Terra Latinoam 29:343–356

    Google Scholar 

  • Celaya-Michel H, García-Oliva F, Rodríguez JC, Castellanos-Villegas AE (2015) Cambios en el almacenamiento de nitrógeno y agua en el suelo de un matorral desértico transformado a sabana de buffel (Pennisetum ciliare (L) Link). Terra Latinoam 33:79–93

    Google Scholar 

  • Cervantes S, Graham E, Andrade JL (2005) Light microhabitats, growth and photosynthesis of an epiphytic bromeliad in a tropical dry forest. Plant Ecol 179:107–118

    Article  Google Scholar 

  • Cervera JC, Andrade JL, Simá JL, Graham EA (2006) Microhabitats, germination, and establishment for Mammillaria gaumeri (Cactaceae), a rare species from Yucatan. Int J Plant Sci 167:311–319

    Article  Google Scholar 

  • Cervera JC, Andrade JL, Graham EA, Durán R, Jackson PC, Simá JL (2007) Photosynthesis and optimal light microhabitats for a rare cactus, Mammillaria gaumeri, in two tropical ecosystem. Biotropica 39:620–627

    Article  Google Scholar 

  • Chapin FS (2003) Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann Bot 91:455–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Chazdon R (1988) Sunflecks and their importance to forest understory plants. Adv Ecol Res 18:1–63

    Article  Google Scholar 

  • Chazdon RL, Field CB (1987) Determinants of photosynthetic capacity in six rainforest Piper species. Oecologia 73:222–230

    Google Scholar 

  • Chazdon RI, William K, Field CB (1989) Interactions between crown structure and light environments in five rain forest Piper species. Am J Bot 75:1459–1475

    Article  Google Scholar 

  • Chazdon RL, Smith AP (1996) Tropical Forest Plant Ecophysiology. Chapman & Hall. New York.

    Google Scholar 

  • Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic response of tropical forests plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman & Hall, New York, pp 5–55

    Chapter  Google Scholar 

  • Chilpa-Galván N, Tamayo-Chim M, Andrade JL, Reyes-García C (2013) Water table depth may influence the asymmetric arrangement of epiphytic bromeliads in a tropical dry forest. Plant Ecol 214:1037–1048

    Article  Google Scholar 

  • Chilpa-Galván N, Zotz G, Sánchez-Fuente GJ, Espadas-Manrique C, Andrade JL, Reyes-García C (2017) Drought, post-dispersal seed predation, and the establishment of epiphytic bromeliads (Tillandsia spp). Biotropica 49:770–773

    Article  Google Scholar 

  • Cornell S, Rendell A, Jickells T (1995) Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376:243–246

    Article  CAS  Google Scholar 

  • Cornellisen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan D, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–338

    Article  Google Scholar 

  • Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. Con Physiol 1:10.1093/conphys/cot001

    Google Scholar 

  • Crausbay SD, Martin PH (2016) Natural disturbance, vegetation patterns and ecological dynamics in tropical montane forests. J Trop Ecol 32:1–20

    Article  Google Scholar 

  • de la Barrera E, Andrade JL (2005) Challenges to plant megadiversity: how environmental physiology can help? New Phytol 167:5–8

    Article  PubMed  Google Scholar 

  • de la Rosa-Manzano E, Andrade JL, Zotz G, Reyes-Garcia C (2014a) Epiphytic orchids in tropical dry forests of Yucatan, Mexico – species occurrence, abundance and correlations with host tree characteristics and environmental conditions. Flora 209:100–109

    Article  Google Scholar 

  • de la Rosa-Manzano E, Andrade JL, Zotz G, Reyes-García C (2014b) Respuestas fisiológicas a la sequía de cinco especies de orquídeas epífitas en dos selvas secas de la Península de Yucatán. Bot Sci 92:607–616

    Article  Google Scholar 

  • de la Rosa-Manzano E, Andrade JL, García-Mendoza E, Zotz G, Reyes-García C (2015) Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico. Planta 242:1425–1438

    Article  PubMed  CAS  Google Scholar 

  • de la Rosa-Manzano E, Andrade JL, Zotz G, Reyes-García C (2017) Physiological plasticity of epiphytic orchids from two contrasting tropical dry forests. Acta Oecol 85:25–32

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gonzalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceição AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romão R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Denslow SJ, Schultz JC, Vitousek PM (1990) Growth responses of tropical shrubs to treefall gap environments. Ecology 71:165–179

    Article  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Díaz S, Symsstad AJ, Chapin FS, Wardle DA, Huenneke LF (2003) Functional diversity revealed by removal experiments. Trends Ecol Evol 18:140–146

    Article  Google Scholar 

  • Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Shang W, Clark H, Campbell BD (2007) Plant trait responses to grazing – a global synthesis. Glob Chang Biol 13:313–341

    Article  Google Scholar 

  • Dick CW, Wright SJ (2005) Tropical mountain cradles of dry forest diversity. PNAS 102:10757–10758

    Article  PubMed  CAS  Google Scholar 

  • Dorrough JW, Ash JE, Bruce S, McIntyre S (2007) From plant neighbourhood to landscape scales: how grazing modifies native and exotic plant species richness in grassland. Plant Ecol 191:185–198

    Article  Google Scholar 

  • Drennan PM, Nobel PS (2000) Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ 23:767–781

    Article  CAS  Google Scholar 

  • Durand LG, Goldstein G (2001) Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia 126:345–354

    Article  PubMed  Google Scholar 

  • Engelbrecht BMJ, Kurssar TA, Tyree MT (2005) Drought effects on seedling survival in a tropical moist forest. Trees 19:312–321

    Article  Google Scholar 

  • Esparza-Olguín L, Valverde T, Vilchis-Anaya E (2002) Demographic analysis of a rare columnar cactus (Neobuxbaumia macrocephala) in the Tehuacán Valley. Mex Conserv Biol 103:349–359

    Article  Google Scholar 

  • Ewers FW, Fisher JB, Fichtner K (1991) Water flux and xylem structure in vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, p 127

    Google Scholar 

  • Farrar DR, Dassler C, Watkins JE, Chanda S (2008) Gametophyte ecology. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, New York, pp 222–256

    Chapter  Google Scholar 

  • Fernández-Marín B, Arroyo A SJ, Becerril M, García-Plazaola I (2012) Do fern gametophytes have the capacity for irradiance acclimation? Biol Plant 56:351–356

    Article  CAS  Google Scholar 

  • Field CB, Vázquez-Yanes C (1993) Species of the genus Piper provide a model to study how plants can grow in different kinds of rainforest habitat. Interciencia 18(5):230–236

    Google Scholar 

  • Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471

    Article  Google Scholar 

  • Flores J, Briones O, Flores A, Sánchez-Colón S (2004) Effect of predation and solar exposure on the emergence and survival of desert seedlings of contrasting life-forms. J Arid Environ 58:1–18

    Article  Google Scholar 

  • Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forest. Earth–Sci Rev 55:73–106

    Article  Google Scholar 

  • Geβler A, Duarte HM, Franco AC, Lüttge U, Demattos EA, Nahm M, Rodrigues PJFP, Scarano FR, Rennenberg H (2005) Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE-Brazil III three legume trees in a semi-deciduous dry forest. Trees 19:523–530

    Article  Google Scholar 

  • Geβler A, Nietschke R, Demattos EA, Zaluar HLT, Scarano FR, Rennenberg H, Lüttge U (2008) Comparison of the performance of three different ecophysiological life forms in a sandy coastal restinga ecosystem of SE-Brazil: a nodulated N2- fixing C3-shrub (Andira legalis (Vell) Toledo), a CAM-shrub (Clusia hilariana Schltdl) and a tap root C3-hemicryptophyte (Allagoptera arenaria (Gomes) O Ktze). Trees 22:105–119

    Article  Google Scholar 

  • Gentry AH (1983) Lianas and the “paradox” of contrasting latitudinal gradients in wood and litter production. Trop Ecol 24:63–67

    Google Scholar 

  • Godínez-Álvarez H, Valiente-Banuet A, Valiente-Banuet L (1999) Biotic interactions and the population dynamics of the long-lived columnar cactus Neobuxbaumia tetetzo in the Tehuacán Valley, Mexico. Can J Bot 77:203–208

    Google Scholar 

  • Godínez-Álvarez H, Valverde T, Ortega-Baez P (2003) Demographic trends in the Cactaceae. Bot Rev 93:173–203

    Article  Google Scholar 

  • Goldstein G, Andrade JL, Nobel PS (1991) Differences in water relations parameters for the chlorenchyma and the parenchyma of Opuntia ficus-indica under wet versus dry condition. Aust J Plant Physiol 18:95–107

    Article  Google Scholar 

  • Gómez Pompa A, del Amo S (1985) Investigaciones sobre la regeneración de selvas altas en Veracruz, México II Editorial Alhambra Mexicana. SA de CV, México 421 pp

    Google Scholar 

  • Gómez Pompa A, Vázquez-Yanez C, del Amo S, Butanda A (eds) (1976) Investigaciones sobre la regeneración de selvas altas en Veracruz, México CECSA, CNEB. INIREB, México 640 pp

    Google Scholar 

  • Gómez- Pompa A, Vázquez-Yanez C, Guevara S (1972) The tropical rain forest: a nonrenewable resource. Science 177:762–765

    Article  PubMed  Google Scholar 

  • Gómez-Pompa A (1971) Posible papel de la vegetación secundaria en la evolución de la flora tropical. Biotropica 3:125–135

    Article  Google Scholar 

  • González-Salvatierra C, Andrade JL, Orellana R, Peña-Rodríguez LM, Reyes-García C (2010) Microambientes de luz y morfología y fisiología foliar de Bromelia karatas (Bromeliaceae) en una selva baja caducifolia de Yucatán, México. Bot Sci 91:75–84

    Article  Google Scholar 

  • Graham E, Andrade JL (2004) Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest. Am J Bot 91:699–706

    Article  PubMed  Google Scholar 

  • Griffiths H (1992) Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ 15:1051–1062

    Article  CAS  Google Scholar 

  • Griffiths H, Maxwell K (1999) In memory of C S Pittendrigh: does exposure in forest canopies relate to photoprotective strategies in epiphytic bromeliads? Funct Ecol 13:15–23

    Article  Google Scholar 

  • Hanke W, Böhner J, Dreber N, Jürgens N, Schmiedel U, Wesuls D, Dengler J (2014) The impact of livestock grazing on plant diversity: an analysis across dryland ecosystems and scales in southern Africa. Ecol Appl 24:1188–1203. https://doi.org/10.1890/13-03771

    Article  PubMed  Google Scholar 

  • Hietz P (2010) Fern adaptations to xeric environments. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Hietz P, Briones O (1998) Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305–316

    Article  PubMed  CAS  Google Scholar 

  • Hietz P, Briones O (2001) Photosynthesis, chlorophyll fluorescence and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Plant Biol 3:279–287

    Article  CAS  Google Scholar 

  • Hietz P, Briones O (2004) Adaptaciones y bases fisiológicas de la distribución de los helechos epifitos en un bosque de niebla. In: Cabrera HM (ed) Fisiología Ecológica de Plantas Mecanismos y Respuestas al Estrés en Ecosistemas. Ediciones Universitarias de Valparaíso, Valparaíso

    Google Scholar 

  • Hietz P, Hietz-Seifer U (1995) Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. J Veg Sci 6:487–498

    Article  Google Scholar 

  • Hietz P, Wanek W, Popp M (1999) Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant Cell Environ 22:1435–1443

    Article  Google Scholar 

  • Hinojo-Hinojo C, Castellanos AE, Rodriguez JC, Delgado-Balbuena J, Romo-León JR, Celaya-Michel H, Huxman TE (2016) Carbon and water fluxes in an exotic Buffelgrass savanna rangeland. Ecol Manag 69:334–341. https://doi.org/10.1016/jrama201604002

    Article  Google Scholar 

  • Holttum RE (1954) A revised flora of Malaya: an illustrated systematic account of the Malayan flora, including commonly cultivated plants, vol II. Government Printing Office, Singapore

    Google Scholar 

  • Huang D, Wu L, Chen JR, Dong L (2011) Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica 49:611–618

    Article  CAS  Google Scholar 

  • Hultine KR, Cable WL, Burgess SSO, Williams DG (2003) Hydraulic redistribution by deep roots of a Chihuahuan Desert phreatophyte. Tree Physiol 23:353–360

    Article  PubMed  CAS  Google Scholar 

  • Hultine KR, Scott RL, Cable WL, Goodrich DC, Williams DG (2004) Hydraulic redistribution by a dominant, warm-desert phreatophyte: seasonal patterns and response to precipitation pulses. Funct Ecol 18:530–538

    Article  Google Scholar 

  • INEGI (2000) Inventario Forestal Nacional Serie III INEGI http://mapasinegobmx/temashtml?seleccion=Vegetación. Accessed June 12, 2008

    Google Scholar 

  • Jaramillo IR, Mendoza A (2004) Apogamia en Dryopteris munchii (Dryopteridaceae). Polibotánica 18:99–110

    Google Scholar 

  • Johansson D (1974) Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica 59:1–129

    Google Scholar 

  • Jones MM, Olivas Rojas P, Tuomisto H, Clark DB (2007) Environmental and neighborhood effects on tree fern distributions in a neotropical lowland rain forest. J Veg Sci 18:13–24

    Article  Google Scholar 

  • Kawai H, Kanegae T, Christensen S, Kiyosue T, Sato T, Imaizumi T, Kadota A, Wada M (2003) Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature 421:287–290

    Article  PubMed  CAS  Google Scholar 

  • Keeley JE, Rundel PW (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci 164(S3):S55–S77

    Article  CAS  Google Scholar 

  • Kelly DL (1985) Epiphytes and climbers of a Jamaican rain forest: vertical distribution, life forms and life history. J Biogeogr 12:223–241

    Article  Google Scholar 

  • Körner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40

    Article  PubMed  Google Scholar 

  • Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, Berlin

    Book  Google Scholar 

  • Li FW, Villarreal JC, Kelly S, Rothfels CJ, Melkonian M, Frangedaki E, Ruhsman M, Sigel EM, Der JP, Pitterman J, Burge DO, Pokorny L, Larsson A, Chen T, Weststran S, Thomas P, Carpenter E, Zhang Y, Tian Z, Chen L, Yan Z, Zhu Y, Sun X, Wang J, Stevenson DW, Crandall-Stotler BJ, Shaw AJ, Wong GKS, Mathews S, Pryer KM (2014) Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci 111:6672–6677

    Article  PubMed  CAS  Google Scholar 

  • López-Romero JM, Riaño K, Briones O (2016) Germinación y frecuencia de esporofitos de dos especies simpátricas de Blechnum (Blechnaceae). Acta Bot Mex 117:47–58

    Article  Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lüttge U (2006) Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from Clusia, the only CAM tree in the neotropics. New Phytol 171:7–25

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants. Springer, Berlin

    Google Scholar 

  • Martínez-Ramos M (2008) Grupos funcionales In: Capital natural de México, vol I: Conocimiento actual de la biodiversidad Conabio, México, pp 365–412

    Google Scholar 

  • Martorell C, Ezcurra E (2002) Rosette scrub occurrence and fog availability in arid mountains of Mexico. J Veg Sci 13:651–662

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 53:2131–2142

    Google Scholar 

  • McIntyre S, Heard KM, Martin TG (2003) The relative importance of cattle grazing in subtropical grasslands: does it reduce or enhance plant biodiversity? J Appl Ecol 40:445–457

    Article  Google Scholar 

  • Medrano H, Tomás M, Martorell S, Flexas J, Hernández E, Rosselló J, Pou A, Escalona J-M, Bota J (2015) From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target. Crop J 3:220–228

    Article  Google Scholar 

  • Mehltreter K, Walker LR, Sharpe JM (eds) (2010) Fern ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Méndez-Barroso LA, Vivoni ER, Robles-Morua A, Mascaro G, Yépez EA, Rodríguez JC, Watts CJ, Garatuza-Payán J, Saíz-Hernández JA (2014) A modeling approach reveals differences in evapotranspiration and its partitioning in two semiarid ecosystems in Northwest Mexico. Water Resour Res 50:3229–3252

    Google Scholar 

  • Miles L, Newton AC, Defries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    Article  Google Scholar 

  • Miranda F, Hernández XE (1963) Los tipos de vegetación de México y su clasificación. Bol Soc Bot Mex 28:29–179

    Google Scholar 

  • Moghaddam-Gheshlagh A, Hernández-Verdugo S, Rueda-Puente O, Soria-Ruíz J, Parra-Terrazas S, Pacheco-Olvera A, Mafakheri N (2017) Climate change impact on Olneya tesota a gray (ironwood) distribution in Sonoran desert using MaxEnt modeling approach. J Wildl Biodivers 1:110–117

    Google Scholar 

  • Molina-Freaner F, Tinoco-Ojanguren C (1997) Vines of a desert plant community in central Sonora, Mexico. Biotropica 29:46–56

    Article  Google Scholar 

  • Molina-Freaner F, Castillo-Gamez R, Tinoco-Ojanguren C, Castellanos AE (2004) Vine species diversity across environmental gradients in Northwestern Mexico. Biodivers Conserv 13:1853–1874

    Article  Google Scholar 

  • Morales-Romero D, Molina-Freaner F (2008) Influence of buffelgrass pasture conversion on the regeneration and reproduction of the columnar cactus, Pachycereus pecten-aboriginum, in northwestern Mexico. J Arid Environ 72:228–237

    Article  Google Scholar 

  • Morales-Romero D, Godinez-Alvarez H, Campo-Alves J, Molina-Freaner F (2012) Effects of land conversion on the regeneration of Pachycereus pecten-aboriginum and its consequences on the population dynamics in northwestern Mexico. J Arid Environ 77:123–129. https://doi.org/10.1016/jjaridenv201109005

    Article  Google Scholar 

  • Morales-Romero D, Campo J, Godinez-Alvarez H, Molina-Freaner F (2015) Soil carbon, nitrogen and phosphorus changes from conversion of thornscrub to buffelgrass pasture in northwestern Mexico. Agric Ecosyst Environ 199:231–237

    Article  CAS  Google Scholar 

  • Nicotra AB, Chazdon RL, Schlichting (1997) Patterns of genotypic variation and phenotypic plasticity of light response in two tropical Piper (Piperaceae) species. Am J Bot 84:1542–1552

    Article  PubMed  CAS  Google Scholar 

  • Niewiadomska E, Borland AM (2008) Crassulacean acid metabolism: a cause or consequence of oxidative stress in planta? In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 69. Springer, Berlin, pp 247–266

    Chapter  Google Scholar 

  • Nobel PS (1985) PAR, water and temperature limitations on the productivity of cultivated Agave fourcroydes (henequen). J Appl Ecol 22:157–173

    Article  Google Scholar 

  • Nobel PS (2002) Cacti: biology and uses. University of California Press, Berkeley

    Google Scholar 

  • Nobel PS, de la Barrera E (2002) High temperatures and net CO2 uptake, growth, and stem damage for the hemiepiphytic cactus Hylocereus undatus. Biotropica 34:225–231

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Ann Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • O’Leary MH (1988) Carbon isotopes in photosynthesis fractionation techniques may reveal new aspects carbon of dynamics in plants. Bioscience 38:328–336

    Article  Google Scholar 

  • Ong BL, Koh CKK, Wee YC (1998) Effects of CO2 on growth and photosynthesis of Pyrrosai piloselloides (L) price gametophytes. Photosynthetica 35:21–27

    Article  Google Scholar 

  • Orlandi Laureto LM, Cianciaruso MV, Soares D, Menezes S (2015) Functional diversity: an overview of its history and applicability. Nat Conservacao 13:112–116

    Article  Google Scholar 

  • Orozco–Segovia A, Sanchez– Coronado ME (2009) Functional diversity in seeds and its implications for ecosystem functionality and restoration ecology. In: Gamboa-de Buen A, Orozco-Segovia A, Cruz-Garcia F (eds) Functional diversity of plant reproduction. Research Signpost, Kerala, pp 175–216

    Google Scholar 

  • Orozco-Segovia A, Vázquez-Yanes C (1989) Light effect on seed germination in Piper L. Acta Ecol 10(2):123–146

    Google Scholar 

  • Orozco-Segovia A, Vazquez-Yanes C (1990) Effect of moisture on seed longevity in seed of some tropical rain forest species. Biotropica 22:215–216

    Article  Google Scholar 

  • Pakeman RJ (2011) Functional diversity indices reveal the impacts of land use intensification on plant community assembly. J Ecol 99:1152–1161

    Article  Google Scholar 

  • Pan Y (2000) Plant functional types: their relevance to ecosystem properties and global change. Ecol Eng 16:305–307

    Article  Google Scholar 

  • Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41:421–453

    Article  CAS  Google Scholar 

  • Pérez-García B, Riba R (1982) Germinación de esporas de Cyatheaceae bajo diversas temperaturas. Biotropica 14:281–287

    Article  Google Scholar 

  • Pérez-García B, Orozco-Segovia A, Riba R (1982) El banco de esporas de helechos en el suelo de Los Tuxtlas, Ver. Bol Soc Bot Méx 43:89–92

    Google Scholar 

  • Pérez-García B, Mendoza-Ruiz A, Sánchez-Coronado ME, Orozco-Segovia A (2007) Effect of light and temperature on germination of spores of four tropical fern species. Acta Oecol 32:172–179

    Article  Google Scholar 

  • Petter G, Wagner K, Wanek W, Sánchez-Delgado EJ, Zotz G, Sarmento-Cabral J, Kreft J (2015) Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Funct Ecol 30:188–198

    Article  Google Scholar 

  • Pfitsch WA, Pearcy RW (1989) Daily carbon gain by Adenocaulon bicolor (Asteraceae), a redwood forest herb, in relation to its light environment. Oecologia 80:465–470

    Article  PubMed  Google Scholar 

  • Pierce S (2007) The jeweled armor of Tillandsia – multifaceted or elongated trichomes provide photoprotection. Aliso 23:44–52

    Article  Google Scholar 

  • Pittendrigh CS (1948) The bromeliad-anopheles-malaria complex in Trinidad I-the bromeliad flora. Evolution 2:58–89

    PubMed  CAS  Google Scholar 

  • Poorter L, Arets EJMM (2003) Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis. Plant Ecol 166:295–306

    Article  Google Scholar 

  • Prasch CM, Sonnewald U (2015) Signaling events in plants: stress factors in combination change the picture. Environ Exp Bot 114:4–14

    Article  CAS  Google Scholar 

  • Raghavan V (1989) Physiology of spore germination. In: Barlow PW, Bray D, Green PB, Slack JMW (eds) Development and cell biology series. University Press, Cambridge

    Google Scholar 

  • Ramírez-Barahona S, Luna-Vega I, Tejero-Díez D (2011) Species richness, endemism, and conservation of American tree fern (Cyatheales). Biodivers Conserv 20:59–72

    Article  Google Scholar 

  • Reyes-García C, Griffiths H (2009) Strategies for survival of perennial bromeliads in seasonally dry forests. In: de la Barrera E, Smith WK (eds) Perspectives in biophysical plant ecophysiology: a tribute to Park S Nobel. Universidad Nacional Autónoma de México, Mexico, pp 121–151

    Google Scholar 

  • Reyes-García C, Griffiths H, Rincón E, Huante P (2008) Niche differentiation in tank and atmospheric epiphytic bromeliads of a seasonally dry forest. Biotropica 40:168–175

    Article  Google Scholar 

  • Reyes-García C, Mejia-Chang M, Griffiths H (2012) High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community. New Phytol 193:745–754

    Article  PubMed  Google Scholar 

  • Reynolds JF, Kemp PR, Ogle K, Fernandez RJ (2004) Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141:194–210

    Article  PubMed  Google Scholar 

  • Riaño K, Briones O (2013) Leaf physiological response to light environment of three tree fern species in a Mexican cloud forest. J Trop Ecol 29:217–228

    Article  Google Scholar 

  • Riaño K, Briones O (2015) Sensitivity of three tree ferns during their first phase of life to the variation of solar radiation and water availability in the Mexican cloud forest. Am J Bot 102:1–10

    Article  CAS  Google Scholar 

  • Riaño K, Briones O, Pérez-García B (2015) Spore germination of three tree fern species in response to light, water potential and canopy openness. Am Fern J 105:59–72

    Article  Google Scholar 

  • Ricalde MF, Andrade JL, Durán R, Dupuy JM, Simá JL, Us-Santamaría R, Santiago L (2010) Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient. Oecologia 164:871–880

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudolph D, Rauer G, Nieder J, Barthlott W (1998) Distributional patterns of epiphytes in the canopy and phorophyte characteristics in a western Andean rain forest in Ecuador. Selbyana 19:27–33

    Google Scholar 

  • Rundel PW, Franklin T (1991) Vines in arid and semi-arid ecosystems. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 337–356

    Google Scholar 

  • Ryel RJ, Leffler AJ, Ivans C, Peek MS, Caldwell MM (2010) Functional differences in water-use patterns of contrasting life forms in Great Basin steppelands. Vadose Zone J 9:548–560

    Article  Google Scholar 

  • Rzedowski J (1978) Vegetación de México. LIMUSA, México

    Google Scholar 

  • Saito N, Harborne JB (1983) A cyaniding glycoside giving scarlet coloration in plants of the Bromeliaceae. Phytochemistry 22:1735–1740

    Article  CAS  Google Scholar 

  • Sakamaki Y, Ino Y (1999) Contribution of fern gametophytes to the growth of produced sporophytes on the basis of carbon gain. Ecol Res 14:59–69

    Article  Google Scholar 

  • Saldaña AO, Hernandez C, Coopman RE, Bravo LA, Corcuera LJ (2010) Differences in light usage among three fern species of genus Blechnum of contrasting ecological breadth in forest light gradient. Ecol Res 25:273–281

    Article  Google Scholar 

  • Salvador MG (2014) Respuesta germinativa y efecto del sustrato sobre el crecimiento de gametofitos de helechos del Bosque Nublado de la Reserva El Riscal, Cofre de Perote, Veracruz. Tesis Licenciatura Instituto Tecnológico Superior de Zacapoaxtla

    Google Scholar 

  • Sanaphre-Villanueva L, Dupuy JM, Andrade JL, Reyes-García C, Jackson PC, Paz H (2017) Patterns of plant functional variation and specialization along secondary succession and topography in a tropical dry forest. Environmental Research Letters 12:0550004. https://doi.org/10.1088/1748-9326/aa6baa

  • Sanchez-Coronado ME, Rincón E, Vázquez-Yanez C (1990) Growth responses of three contrasting Piper species growing under different light conditions. Can J Bot 68:1182–1186

    Article  Google Scholar 

  • Santiago LS, Silvera K, Andrade JL, Dawson T (2017) Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition. Environ Res Lett 2:115006. https://doi.org/10.1088/1748-9326/aa8959

    Article  Google Scholar 

  • Saucedo-Monarque E, García-Moya E, Castellanos AE, Flores-Flores JL (1997) La riqueza, una variable de respuesta de la vegetación a la introducción del zacate buffel. Agrociencia 31:83–90

    Google Scholar 

  • Schwinning S, Ehleringer JR (2001) Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. J Ecol 89:464–480

    Article  Google Scholar 

  • Scott RL, Huxman TE, Williams DG, Goodrich DC (2006) Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Glob Chang Biol 12:311–324

    Article  Google Scholar 

  • Scott RL, Huxman TE, Barron-Gafford GA, Jenerette GD, Young JM, Hamerlynck EP (2014) When vegetation change alters ecosystem water availability. Glob Chang Biol 20:2198–2210 doi:DOI:202222/GCB12511

    Article  PubMed  Google Scholar 

  • Seager R, Ting M, Davis M, Cane M, Naik N, Miller J, Li C, Cook E, Stahle DW (2007a) Mexican drought: an observational, modeling and proxy reconstruction study of variability and climate change Lamont Doherty Earth Observatory. Columbia University, Palisades

    Google Scholar 

  • Seager R, Ting M, Held IM, Kushnir Y, Lu J, Vecchi G, Huan H, Harnik N, Leetmaa A, Lau N, Li C, Velez J, Naik N (2007b) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  PubMed  CAS  Google Scholar 

  • Seager R, Ting M, Davis M, Cane M, Naik N, Miller J, Li C, Cook E, Stahle DW (2009) Mexican drought: an observational, modeling and proxy reconstruction study of variability and climate change Atmosfera

    Google Scholar 

  • Sharpe JM, Mehltreter K (2010) Ecological insights form fern population dynamics. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Shreve F (1942) The desert vegetation of North America. Bot Rev 8:195–246

    Article  Google Scholar 

  • Silvera K, Lasso E (2016) Ecophysiology and Crassulacean acid metabolism of tropical epiphytes. In: Goldstein G, Santiago LS (eds) Tropical tree physiology – adaptations and responses in a changing environment. Springer, Cham, pp 25–43

    Google Scholar 

  • Smith TM, Shugart HH, Woodward FI (eds) (1997) Plant functional types their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge

    Google Scholar 

  • Stewart G, Schmidt S, Handley L, Turnbull M, Erskine P, Joly C (1995) 15N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition. Plant Cell Environ 18:85–90

    Article  Google Scholar 

  • Tauz M, Hietz P, Briones O (2001) The significance of carotenoids and tocopherols in photoprotection of seven epiphytic fern species. Aust J Plant Physiol 28:775–783

    Google Scholar 

  • ter Steege H, Cornelissen JHC (1989) Distribution and ecology of vascular epiphytes in lowland rain forest of Guayana. Biotropica 21:331–339

    Article  Google Scholar 

  • Testo WL, Watkins JE (2013) Understanding mechanisms of rarity in pteridophytes: competition and climate change threaten the rare fern Asplenium scolopendrium var americanum (Aspleniaceae). Am J Bot 100:2261–2270

    Article  PubMed  Google Scholar 

  • Tinoco-Ojanguren C, Pearcy RW (1992) Dynamic stomatal behavior and its role in carbon gain during lightflecks of a gap phase and an understory species acclimated to high and low light. Oecologia 92:222–228

    Article  PubMed  Google Scholar 

  • Tinoco-Ojanguren C, Pearcy RW (1993) Stomatal dynamics and its importance to carbon gain in two rainforest Piper species 1 VPD effects on the transient stomatal response to lightflecks. Oecologia 94:388–394

    Article  PubMed  Google Scholar 

  • Tinoco-Ojanguren C, Díaz A, Martínez J, and Molina-Freaner F (2013) Species diversity and regeneration of native species in buffelgrass pastures from the thornscrub of Sonora, México. J Arid Environ 97:26–37

    Google Scholar 

  • Trejo I, Dirzo R (2002) Floristic diversity of Mexican seasonally dry tropical forests. Biodivers Conserv 11:2063–2048

    Article  Google Scholar 

  • Valdez-Hernández M, González-Salvatierra C, Reyes-García C, Jackson PC, Andrade JL (2015) Physiological ecology of vascular plants. In: Islebe GA, Calmé S, León-Cortés JL, Schmook B (eds) Biodiversity and conservation of the Yucatan Peninsula. Springer, Cham, pp 97–129

    Chapter  Google Scholar 

  • Valiente-Banuet A, Ezcurra E (1991) Shade as a cause of the association between the cactus Neobuxbaumia tetetzo and the nurse plant Mimosa luisana in the Tehuacán Valley, Mexico. J Ecol 79:961–971

    Article  Google Scholar 

  • Vargas-Soto G, Andrade JL, Winter K (2009) Carbon isotope composition and mode of photosynthesis in Clusia species from Mexico. Photosynthetica 47:33–40

    Article  CAS  Google Scholar 

  • Vaz AP, Figueiredo-Ribeiro RC, Kerbauy G (2004) Photoperiod and temperature effects on in vitro growth and flowering of P pusilla, an epiphytic orchid plant. Physol Biochem 42:411–415

    CAS  Google Scholar 

  • Vázquez Yanes C (1976) Estudios sobre ecofisiologia de la germinación en una zona calido-humeda de Mexico. In: Gómez-Pompa A, Del Amo S (eds) Investigaciones sobre la regeneración de selvas altas en Veracruz, México CECSA, CNEB. INIREB, México, pp 279–387

    Google Scholar 

  • Vázquez Yanes C, Smith H (1982) Phytochrome control of seed germination in the tropical rain forest pioneer trees Cecropia obtusifolia and Piper auritum and its ecological significance. New Phytol 92:477–485

    Article  Google Scholar 

  • Vázquez-Yanes C, Orozco-Segovia A (1982) Germination of the seeds of a tropical rain forest shrub, Piper hispidum Sw (Piperaceae), under different qualities of light. Phyton 42:143–149

    Google Scholar 

  • Vázquez-Yanes C, Orozco-Segovia A (1987) Light gap detection bt the photoblastic seeds of Cecropla obtusifolia and Piper auritum, two tropical rain forest trees. Biol Plant 29:234–236

    Article  Google Scholar 

  • Vázquez-Yanes C, Orozco-Segovia A (1990) Ecological significance of light controlled seed germination in two contrasting tropical habitats. Oecologia 83:171–175

    Article  PubMed  Google Scholar 

  • Vázquez-Yanes C, Orozco-Segovia A (1993) Patterns of seed longevity and germination in the tropical rainforest. Annu Rev Ecol Syst 24:69–87

    Article  Google Scholar 

  • Villaseñor JL, Téllez-Valdés O (2004) Distribución potencial de las especies del género Jefea (Asteraceae) en México. An Inst Biol (serie Botánica) 75:205–224

    Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Volkova L, Bennett L, Tausz M (2009) Effects of sudden exposure to high light levels on two tree fern species Dicksonia antarctica (Dicksoniaceae) and Cyathea australis (Cyatheaceae) acclimated to different light intensities. Aust J Bot 57:562–571

    Article  Google Scholar 

  • Volkova L, Bennett LT, Tausz M (2010) Diurnal and seasonal variations in photosynthetic and morphological traits of the tree ferns Dicksonia antarctica (Discksoniaceae) and Cyathea australis (Cyatheaceae) in wet sclerophyll forests of Australia. Environ Exp Bot 70:11–19

    Article  Google Scholar 

  • Walters MB, Field CB (1987) Photosynthetic light acclimation in two rainforest Piper species with different ecological amplitudes. Oecologia 72:449–456

    Article  PubMed  CAS  Google Scholar 

  • Warne TR, Lloyd RM (1980) The Role of Spore Germination and Gametophyte Development in Habitat Selection: Temperature Responses in Certain Temperature and Tropical Ferns. Bull of the Torrey Botanical Club 107:57–64

    Google Scholar 

  • Watkins JE, Mack MK, Mulkey SS (2007) Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. Am J Bot 94:701–708

    Article  PubMed  Google Scholar 

  • Watkins JE, Holbrook NM, Zwieniecki MA (2010) Hydraulic properties of fern sporophytes: consequences for ecological and evolutionary diversification. Am J Bot 97:2007–2019

    Article  PubMed  Google Scholar 

  • Winter K, Smith JAC (1996) An introduction to crassulacean acid metabolism: biochemical principles and biological diversity. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism biochemistry, ecophysiology and evolution. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Winter K, Aranda J, Holtum JAM (2005) Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. Funct Plant Biol 32:381–388

    Article  CAS  Google Scholar 

  • Wong SL, Chen CW, Huang HW, Weng JH (2012) Using combined measurements of gas exchange and chlorophyll fluorescence to investigate the photosynthetic light responses of plant species adapted to different light regimes. Photosynthetica 50:206–214

    Article  CAS  Google Scholar 

  • Woodhouse RW, Nobel P (1982) Stipe anatomy, water potential, and xylem conductances in seven species of ferns (Filicopsida). Am J Bot 69:135–140

    Article  Google Scholar 

  • Yuan ZY, Chen HY (2015) Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes nature. Climate Change 5:465–469

    CAS  Google Scholar 

  • Zhang Q, Chen J-W, Li B-G, Ca K-F (2009) The effect of drought on photosynthesis in two epiphytic and two terrestrial tropical fern species. Photosynthetica 47:128–132

    Article  Google Scholar 

  • Zotz G (2016) Plants on plants – the biology of vascular epiphytes. Springer, Cham

    Book  Google Scholar 

  • Zotz G, Bader MY (2009) Epiphytic plants in a changing world-global: change effects on vascular and nonvascular epiphytes. In: Lütgge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, vol 70. Springer-Verlag, Berlin, pp 147–170

    Chapter  Google Scholar 

  • Zotz G, Hietz P (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot 52:2067–2078

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A. C. V. acknowledges M. Martínez and O. Téllez-Valdés for the niche distribution, D. G. Williams for leaf 13C isotopic, and H. Celaya-Michel for the soil moisture data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Tinoco-Ojanguren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tinoco-Ojanguren, C., Andrade, J.L., Briones, O., Castellanos, A.E. (2018). Functional Diversity in Plants: Implications for Conservation Issues of the Mexican Biodiversity. In: Ortega-Rubio, A. (eds) Mexican Natural Resources Management and Biodiversity Conservation. Springer, Cham. https://doi.org/10.1007/978-3-319-90584-6_23

Download citation

Publish with us

Policies and ethics

Navigation