Ocular Gene Therapies

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Loss of vision is one of the most severe handicaps highly impacting the daily life of affected individuals. Until recently there has been no treatment available for patients suffering from inherited blinding disorders. During the past years research activities in the field of ocular gene therapy have been intensified and led to marketing authorization of voretigene neparvovec (Keeler and Flotte, Annu Rev Virol, 2019), the first-in-class gene therapy product for the treatment of Leber’s congenital amaurosis (LCA), a retinal dystrophy caused by mutations in the retinal pigment epithelium (RPE) expressed gene RPE65. Voretigene neparvovec is a one-time gene augmentation therapy which utilizes a recombinant adeno-associated virus (AAV)-based vector to express a healthy copy of the human RPE65 gene in the patient’s RPE cells. For other forms of inherited retinal dystrophies many promising approaches are in clinical and preclinical development. Most approaches use the principle of gene augmentation with AAV vectors designed to result in sustained expression of a therapeutic gene in specific target cells of the retina, for example, RPE, cone or rod photoreceptors. The goal of gene augmentation is to achieve long-term gene expression and, thus, to augment or endow the function which is impaired or missing due to the gene mutation. The success with gene augmentation therapy in monogenic disorders like RPE65-linked LCA helped to further develop gene therapy technologies and broaden the concept of gene supplementation also for nongenetic disorders, such as age-related macular degeneration (AMD). This chapter aims to introduce the most commonly used principles and technologies of gene therapy and provide an overview of current approaches and clinical trials. Moreover, limitations and risks of the existing technologies will be discussed followed by an outlook on next-generation technologies which could help to address the unmet needs in ocular gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAV:

adeno-associated virus

ACHM:

achromatopsia

Ad:

adenovirus

AMD:

age-related macular degeneration

AON:

antisense oligonucleotides

Cas:

CRISPR-associated nucleases

CHM:

choroideremia

ChR2:

channelrhodopsin-2

CRD:

cone-rod dystrophies

CRISPR:

clustered regularly interspaced short palindromic repeats

EIAV:

equine infectious anemia virus

ILM:

inner limiting membrane

IRD:

inherited retinal dystrophies

ITR:

inverted terminal repeat

IVT:

intravitreal

LCA:

Leber’s congenital amaurosis

LV:

lentivirus

NpHR:

halorhodopsin

PEDF:

epithelium derived factor

PR:

photoreceptors

rAAV:

recombinant adeno-associated virus

RP:

retinitis pigmentosa

RPE:

retinal pigment epithelium

STGD:

Stargardt disease

SR:

subretinal

VEGF:

vascular endothelial growth factor

References

  1. Cremers FPM, Boon CJF, Bujakowska K, Zeitz C. Special issue introduction: inherited retinal disease: novel candidate genes, genotype-phenotype correlations, and inheritance models. Genes (Basel). 2018;9(4)

    Google Scholar 

  2. Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res. 2010;29(5):335–75.

    Article  CAS  PubMed  Google Scholar 

  3. Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol. 2019;

    Google Scholar 

  4. Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt. 2007;12(5):051403.

    Article  PubMed  Google Scholar 

  5. Burns SA, Elsner AE, Sapoznik KA, Warner RL, Gast TJ. Adaptive optics imaging of the human retina. Prog Retin Eye Res. 2019;68:1–30.

    Article  PubMed  Google Scholar 

  6. Robson JG, Frishman LJ. The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Prog Retin Eye Res. 2014;39:1–22.

    Article  PubMed  Google Scholar 

  7. Willett K, Bennett J. Immunology of AAV-mediated gene transfer in the eye. Front Immunol. 2013;4:261.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol. 2017;17(12):761–73.

    Article  CAS  PubMed  Google Scholar 

  9. Reyes NJ, O'Koren EG, Saban DR. New insights into mononuclear phagocyte biology from the visual system. Nat Rev Immunol. 2017;17(5):322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Auricchio A, Smith AJ, Ali RR. The future looks brighter after 25 years of retinal gene therapy. Hum Gene Ther. 2017;28(11):982–7.

    Article  CAS  PubMed  Google Scholar 

  11. Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, et al. Principles of pharmacology in the eye. Br J Pharmacol. 2017;174(23):4205–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kiser PD, Palczewski K. Retinoids and retinal diseases. Annu Rev Vis Sci. 2016;2:197–234.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kiser PD, Zhang J, Badiee M, Kinoshita J, Peachey NS, Tochtrop GP, et al. Rational tuning of visual cycle modulator pharmacodynamics. J Pharmacol Exp Ther. 2017;362(1):131–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hussain RM, Gregori NZ, Ciulla TA, Lam BL. Pharmacotherapy of retinal disease with visual cycle modulators. Expert Opin Pharmacother. 2018;19(5):471–81.

    Article  CAS  PubMed  Google Scholar 

  15. Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res. 2018;65:50–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gagliardi G, Ben M'Barek K, Goureau O. Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res. 2019;

    Google Scholar 

  17. ** ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, et al. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019;69:38–56.

    Article  CAS  PubMed  Google Scholar 

  18. Zarbin M, Sugino I, Townes-Anderson E. Concise review: update on retinal pigment epithelium transplantation for age-related macular degeneration. Stem Cells Transl Med. 2019;8(5):466–77.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye (Lond). 2017;31(10):1383–98.

    Article  CAS  Google Scholar 

  20. DiCarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina. J Clin Invest. 2018;128(6):2177–88.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mashhour B, Couton D, Perricaudet M, Briand P. In vivo adenovirus-mediated gene transfer into ocular tissues. Gene Ther. 1994;1(2):122–6.

    CAS  PubMed  Google Scholar 

  22. Bennett J, Wilson J, Sun D, Forbes B, Maguire A. Adenovirus vector-mediated in vivo gene transfer into adult murine retina. Invest Ophthalmol Vis Sci. 1994;35(5):2535–42.

    CAS  PubMed  Google Scholar 

  23. Li T, Adamian M, Roof DJ, Berson EL, Dryja TP, Roessler BJ, et al. In vivo transfer of a reporter gene to the retina mediated by an adenoviral vector. Invest Ophthalmol Vis Sci. 1994;35(5):2543–9.

    CAS  PubMed  Google Scholar 

  24. Crystal RG. Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther. 2014;25(1):3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang W, Ehrhardt A. Getting genetic access to natural adenovirus genomes to explore vector diversity. Virus Genes. 2017;53(5):675–83.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar-Singh R. Barriers for retinal gene therapy: separating fact from fiction. Vis Res. 2008;48(16):1671–80.

    Article  CAS  PubMed  Google Scholar 

  27. Chevez-Barrios P, Chintagumpala M, Mieler W, Paysse E, Boniuk M, Kozinetz C, et al. Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir. J Clin Oncol. 2005;23(31):7927–35.

    Article  CAS  PubMed  Google Scholar 

  28. Campochiaro PA, Nguyen QD, Shah SM, Klein ML, Holz E, Frank RN, et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther. 2006;17(2):167–76.

    Article  CAS  PubMed  Google Scholar 

  29. Cashman SM, McCullough L, Kumar-Singh R. Improved retinal transduction in vivo and photoreceptor-specific transgene expression using adenovirus vectors with modified penton base. Mol Ther J Am Soc Gene Ther. 2007;15(9):1640–6.

    Article  CAS  Google Scholar 

  30. Follenzi A, Naldini L. HIV-based vectors. Preparation and use methods. Mol Med. 2002;69:259–74.

    CAS  Google Scholar 

  31. Cavalieri V, Baiamonte E, Lo IM. Non-primate lentiviral vectors and their applications in gene therapy for ocular disorders. Viruses. 2018;10(6)

    Google Scholar 

  32. Balaggan KS, Ali RR. Ocular gene delivery using lentiviral vectors. Gene Ther. 2012;19(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  33. Miyoshi H, Takahashi M, Gage FH, Verma IM. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci U S A. 1997;94(19):10319–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bainbridge JW, Stephens C, Parsley K, Demaison C, Halfyard A, Thrasher AJ, et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther. 2001;8(21):1665–8.

    Article  CAS  PubMed  Google Scholar 

  35. Kostic C, Chiodini F, Salmon P, Wiznerowicz M, Deglon N, Hornfeld D, et al. Activity analysis of housekee** promoters using self-inactivating lentiviral vector delivery into the mouse retina. Gene Ther. 2003;10(9):818–21.

    Article  CAS  PubMed  Google Scholar 

  36. Zallocchi M, Binley K, Lad Y, Ellis S, Widdowson P, Iqball S, et al. EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat. PLoS One. 2014;9(4):e94272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J, et al. Correction of the disease phenotype in the mouse model of stargardt disease by lentiviral gene therapy. Gene Ther. 2008;15(19):1311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Binley K, Widdowson PS, Kelleher M, de Belin J, Loader J, Ferrige G, et al. Safety and biodistribution of an equine infectious anemia virus-based gene therapy, RetinoStat((R)), for age-related macular degeneration. Hum Gene Ther. 2012;23(9):980–91.

    Article  CAS  PubMed  Google Scholar 

  39. Fouladi N, Parker M, Kennedy V, Binley K, McCloskey L, Loader J, et al. Safety and efficacy of OXB-202, a genetically engineered tissue therapy for the prevention of rejection in high-risk corneal transplant patients. Hum Gene Ther. 2018;29(6):687–98.

    Article  CAS  PubMed  Google Scholar 

  40. Campochiaro PA, Lauer AK, Sohn EH, Mir TA, Naylor S, Anderton MC, et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum Gene Ther. 2017;28(1):99–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55.

    Article  CAS  PubMed  Google Scholar 

  42. Dulla K, Aguila M, Lane A, Jovanovic K, Parfitt DA, Schulkens I, et al. Splice-modulating oligonucleotide QR-110 restores CEP290 mRNA and function in human c.2991+1655A>G LCA10 models. Mol Ther Nucleic Acids. 2018;12:730–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Slijkerman RW, Vache C, Dona M, Garcia-Garcia G, Claustres M, Hetterschijt L, et al. Antisense oligonucleotide-based splice correction for USH2A-associated retinal degeneration caused by a frequent deep-intronic mutation. Mol Ther Nucleic Acids. 2016;5(10):e381.

    Article  CAS  PubMed  Google Scholar 

  44. Murray SF, Jazayeri A, Matthes MT, Yasumura D, Yang H, Peralta R, et al. Allele-specific inhibition of rhodopsin with an antisense oligonucleotide slows photoreceptor cell degeneration. Invest Ophthalmol Vis Sci. 2015;56(11):6362–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lambricht L, Lopes A, Kos S, Sersa G, Preat V, Vandermeulen G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv. 2016;13(2):295–310.

    Article  CAS  PubMed  Google Scholar 

  46. Chen W, Li H, Shi D, Liu Z, Yuan W. Microneedles as a delivery system for gene therapy. Front Pharmacol. 2016;7:137.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Oliveira AV, Rosa da Costa AM, Silva GA. Non-viral strategies for ocular gene delivery. Mater Sci Eng C Mater Biol Appl. 2017;77:1275–89.

    Article  CAS  PubMed  Google Scholar 

  48. Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: an overview and future directions. J Control Release. 2015;219:471–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zulliger R, Watson JN, Al-Ubaidi MR, Padegimas L, Sesenoglu-Laird O, Cooper MJ, et al. Optimizing non-viral gene therapy vectors for delivery to photoreceptors and retinal pigment epithelial cells. Adv Exp Med Biol. 2018;1074:109–15.

    Article  CAS  PubMed  Google Scholar 

  50. Kelley RA, Conley SM, Makkia R, Watson JN, Han Z, Cooper MJ, et al. DNA nanoparticles are safe and nontoxic in non-human primate eyes. Int J Nanomedicine. 2018;13:1361–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cideciyan AV, Jacobson SG, Drack AV, Ho AC, Charng J, Garafalo AV, et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med. 2019;25(2):225–8.

    Article  CAS  PubMed  Google Scholar 

  52. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12.

    Article  CAS  PubMed  Google Scholar 

  53. Rabinowitz J, Chan YK, Samulski RJ. Adeno-Associated Virus (AAV) versus immune response. Viruses. 2019;11(2)

    Google Scholar 

  54. Lipinski DM, Thake M, MacLaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res. 2013;32:22–47.

    Article  CAS  PubMed  Google Scholar 

  55. Mietzsch M, Penzes JJ, Agbandje-McKenna M. Twenty-five years of structural parvovirology. Viruses. 2019;11(4)

    Google Scholar 

  56. Grosse S, Penaud-Budloo M, Herrmann AK, Borner K, Fakhiri J, Laketa V, et al. Relevance of assembly-activating protein for Adeno-associated virus vector production and capsid protein stability in mammalian and insect cells. J Virol. 2017;

    Google Scholar 

  57. Sonntag F, Schmidt K, Kleinschmidt JA. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci U S A. 2010;107(22):10220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Samulski RJ, Berns KI, Tan M, Muzyczka N. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci U S A. 1982;79(6):2077–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther J Am Soc Gene Ther. 2012;20(4):699–708.

    Article  CAS  Google Scholar 

  60. Penaud-Budloo M, Francois A, Clement N, Ayuso E. Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev. 2018;8:166–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boye SE, Boye SL, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther J Am Soc Gene Ther. 2013;21(3):509–19.

    Article  CAS  Google Scholar 

  62. Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res. 2014;

    Google Scholar 

  63. Grieger JC, Choi VW, Samulski RJ. Production and characterization of adeno-associated viral vectors. Nat Protoc. 2006;1(3):1412–28.

    Article  CAS  PubMed  Google Scholar 

  64. Grimm D, Kern A, Rittner K, Kleinschmidt JA. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther. 1998;9(18):2745–60.

    Article  CAS  PubMed  Google Scholar 

  65. Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N, et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet. 1996;5(5):591–4.

    Article  CAS  PubMed  Google Scholar 

  66. Bennett J, Duan D, Engelhardt JF, Maguire AM. Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction. Invest Ophthalmol Vis Sci. 1997;38(13):2857–63.

    CAS  PubMed  Google Scholar 

  67. Flannery JG, Zolotukhin S, Vaquero MI, LaVail MM, Muzyczka N, Hauswirth WW. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci U S A. 1997;94(13):6916–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ali RR, Auricchio A, Smith AJ. The future looks brighter after 25 years of retinal gene therapy. Hum Gene Ther. 2017;

    Google Scholar 

  69. Schön C, Biel M, Michalakis S. Retinal gene delivery by adeno-associated virus (AAV) vectors: strategies and applications. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2015;

    Google Scholar 

  70. Carvalho LS, Xu J, Pearson RA, Smith AJ, Bainbridge JW, Morris LM, et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet. 2011;20(16):3161–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Michalakis S, Muhlfriedel R, Tanimoto N, Krishnamoorthy V, Koch S, Fischer MD, et al. Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. Mol Ther J Am Soc Gene Ther. 2010;18(12):2057–63.

    Article  CAS  Google Scholar 

  72. Alexander JJ, Umino Y, Everhart D, Chang B, Min SH, Li Q, et al. Restoration of cone vision in a mouse model of achromatopsia. Nat Med. 2007;13(6):685–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Komaromy AM, Alexander JJ, Cooper AE, Chiodo VA, Glushakova LG, Acland GM, et al. Targeting gene expression to cones with human cone opsin promoters in recombinant AAV. Gene Ther. 2008;15(14):1049–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M, et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol. 2007;81(20):11372–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Young JE, Vogt T, Gross KW, Khani SC. A short, highly active photoreceptor-specific enhancer/promoter region upstream of the human rhodopsin kinase gene. Invest Ophthalmol Vis Sci. 2003;44(9):4076–85.

    Article  PubMed  Google Scholar 

  76. Beltran WA, Cideciyan AV, Lewin AS, Iwabe S, Khanna H, Sumaroka A, et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci U S A. 2012;109(6):2132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nicoletti A, Kawase K, Thompson DA. Promoter analysis of RPE65, the gene encoding a 61-kDa retinal pigment epithelium-specific protein. Invest Ophthalmol Vis Sci. 1998;39(3):637–44.

    CAS  PubMed  Google Scholar 

  78. Esumi N, Oshima Y, Li Y, Campochiaro PA, Zack DJ. Analysis of the VMD2 promoter and implication of E-box binding factors in its regulation. J Biol Chem. 2004;279(18):19064–73.

    Article  CAS  PubMed  Google Scholar 

  79. Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES, Lockridge JA, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther J Am Soc Gene Ther. 2011;19(7):1220–9.

    Article  CAS  Google Scholar 

  80. Mace E, Caplette R, Marre O, Sengupta A, Chaffiol A, Barbe P, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther J Am Soc Gene Ther. 2014;

    Google Scholar 

  81. Aartsen WM, van Cleef KW, Pellissier LP, Hoek RM, Vos RM, Blits B, et al. GFAP-driven GFP expression in activated mouse Muller glial cells aligning retinal blood vessels following intravitreal injection of AAV2/6 vectors. PLoS One. 2010;5(8):e12387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liang FQ, Dejneka NS, Cohen DR, Krasnoperova NV, Lem J, Maguire AM, et al. AAV-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse. Mol Ther J Am Soc Gene Ther. 2001;3(2):241–8.

    Article  CAS  Google Scholar 

  83. Manfredi A, Marrocco E, Puppo A, Cesi G, Sommella A, Della Corte M, et al. Combined rod and cone transduction by adeno-associated virus 2/8. Hum Gene Ther. 2013;24(12):982–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD, Masella BD, et al. Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci. 2011;52(5):2775–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stieger K, Le Meur G, Lasne F, Weber M, Deschamps JY, Nivard D, et al. Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol Ther J Am Soc Gene Ther. 2006;13(5):967–75.

    Article  CAS  Google Scholar 

  86. Auricchio A, Kobinger G, Anand V, Hildinger M, O'Connor E, Maguire AM, et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet. 2001;10(26):3075–81.

    Article  CAS  PubMed  Google Scholar 

  87. Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther. 2005;5(3):285–97.

    Article  CAS  PubMed  Google Scholar 

  88. Vandenberghe LH, Bell P, Maguire AM, Cearley CN, **ao R, Calcedo R, et al. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med. 2011;3(88):88ra54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199(3):381–90.

    Article  PubMed  Google Scholar 

  90. Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. Vis Res. 2008;48(3):353–9.

    Article  CAS  PubMed  Google Scholar 

  91. Lebherz C, Maguire A, Tang W, Bennett J, Wilson JM. Novel AAV serotypes for improved ocular gene transfer. J Gene Med. 2008;10(4):375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mühlfriedel R, Michalakis S, Garrido MG, Biel M, Seeliger MW. Optimized technique for subretinal injections in mice. Methods Mol Biol. 2013;935:343–9.

    Article  CAS  PubMed  Google Scholar 

  93. Muhlfriedel R, Michalakis S, Garrido MG, Sothilingam V, Schon C, Biel M, et al. Optimized subretinal injection technique for gene therapy approaches. Methods Mol Biol. 1834;2019:405–12.

    Google Scholar 

  94. Xue K, Groppe M, Salvetti AP, MacLaren RE. Technique of retinal gene therapy: delivery of viral vector into the subretinal space. Eye (Lond). 2017;31(9):1308–16.

    Article  CAS  Google Scholar 

  95. Lotery AJ, Yang GS, Mullins RF, Russell SR, Schmidt M, Stone EM, et al. Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina. Hum Gene Ther. 2003;14(17):1663–71.

    Article  CAS  PubMed  Google Scholar 

  96. Mussolino C, della Corte M, Rossi S, Viola F, Di Vicino U, Marrocco E, et al. AAV-mediated photoreceptor transduction of the pig cone-enriched retina. Gene Ther. 2011;18(7):637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Natkunarajah M, Trittibach P, McIntosh J, Duran Y, Barker SE, Smith AJ, et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Ther. 2008;15(6):463–7.

    Article  CAS  PubMed  Google Scholar 

  98. Vandenberghe LH, Bell P, Maguire AM, **ao R, Hopkins TB, Grant R, et al. AAV9 targets cone photoreceptors in the nonhuman primate retina. PLoS One. 2013;8(1):e53463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Seitz R, Tamm ER. N-methyl-D-aspartate (NMDA)-mediated excitotoxic damage: a mouse model of acute retinal ganglion cell damage. Methods Mol Biol. 2013;935:99–109.

    Article  CAS  PubMed  Google Scholar 

  100. Hellström M, Ruitenberg MJ, Pollett MA, Ehlert EM, Twisk J, Verhaagen J, et al. Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection. Gene Ther. 2009;16(4):521–32.

    Article  CAS  PubMed  Google Scholar 

  101. Igarashi T, Miyake K, Asakawa N, Miyake N, Shimada T, Takahashi H. Direct comparison of administration routes for AAV8-mediated ocular gene therapy. Curr Eye Res. 2013;38(5):569–77.

    Article  CAS  PubMed  Google Scholar 

  102. Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 1998;72(2):1438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med. 1999;5(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  104. Summerford C, Bartlett JS, Samulski RJ. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med. 1999;5(1):78–82.

    Article  CAS  PubMed  Google Scholar 

  105. Kashiwakura Y, Tamayose K, Iwabuchi K, Hirai Y, Shimada T, Matsumoto K, et al. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol. 2005;79(1):609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol. 2006;80(19):9831–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol. 2001;75(15):6884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shen S, Bryant KD, Brown SM, Randell SH, Asokan A. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem. 2011;286(15):13532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Di Pasquale G, Davidson BL, Stein CS, Martins I, Scudiero D, Monks A, et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med. 2003;9(10):1306–12.

    Article  CAS  PubMed  Google Scholar 

  110. Bartel M, Schaffer D, Büning H. Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity. Front Microbiol. 2011;2:204.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Vandenberghe LH, Wilson JM, Gao G. Tailoring the AAV vector capsid for gene therapy. Gene Ther. 2009;16(3):311–9.

    Article  CAS  PubMed  Google Scholar 

  112. Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-McKenna M, et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology. 2008;381(2):194–202.

    Article  CAS  PubMed  Google Scholar 

  113. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ, et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther J Am Soc Gene Ther. 2009;17(3):463–71.

    Article  CAS  Google Scholar 

  114. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci U S A. 2008;105(22):7827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Koch S, Sothilingam V, Garcia Garrido M, Tanimoto N, Becirovic E, Koch F, et al. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Hum Mol Genet. 2012;21(20):4486–96.

    Article  CAS  PubMed  Google Scholar 

  116. Pang JJ, Dai X, Boye SE, Barone I, Boye SL, Mao S, et al. Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa. Mol Ther J Am Soc Gene Ther. 2011;19(2):234–42.

    Article  CAS  Google Scholar 

  117. Kay CN, Ryals RC, Aslanidi GV, Min SH, Ruan Q, Sun J, et al. Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS One. 2013;8(4):e62097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Petrs-Silva H, Dinculescu A, Li Q, Deng WT, Pang JJ, Min SH, et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther J Am Soc Gene Ther. 2011;19(2):293–301.

    Article  CAS  Google Scholar 

  119. Mowat FM, Gornik KR, Dinculescu A, Boye SL, Hauswirth WW, Petersen-Jones SM, et al. Tyrosine capsid-mutant AAV vectors for gene delivery to the canine retina from a subretinal or intravitreal approach. Gene Ther. 2014;21(1):96–105.

    Article  CAS  PubMed  Google Scholar 

  120. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15(7):445–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Märsch S, Huber A, Hallek M, Buning H, Perabo L. A novel directed evolution method to enhance cell-type specificity of adeno-associated virus vectors. Comb Chem High Throughput Screen. 2010;13(9):807–12.

    Article  PubMed  Google Scholar 

  122. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med. 2013;5(189):189ra76.

    Article  CAS  PubMed  Google Scholar 

  123. Grishanin R, Vuillemenot B, Sharma P, Keravala A, Greengard J, Gelfman C, et al. Preclinical evaluation of ADVM-022, a novel gene therapy approach to treating wet age-related macular degeneration. Mol Ther J Am Soc Gene Ther. 2019;27(1):118–29.

    Article  CAS  Google Scholar 

  124. Klimczak RR, Koerber JT, Dalkara D, Flannery JG, Schaffer DV. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Muller cells. PLoS One. 2009;4(10):e7467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dalkara D, Kolstad KD, Guerin KI, Hoffmann NV, Visel M, Klimczak RR, et al. AAV mediated GDNF secretion from retinal glia slows down retinal degeneration in a rat model of retinitis pigmentosa. Mol Ther J Am Soc Gene Ther. 2011;19(9):1602–8.

    Article  CAS  Google Scholar 

  126. Byrne LC, Day TP, Visel M, Strazzeri JA, Fortuny C, Dalkara D, et al. In vivo-directed evolution of adeno-associated virus in the primate retina. JCI Insight. 2020;5(10)

    Google Scholar 

  127. Pavlou M, Schön C, Occelli LM, Rossi A, Meumann N, Boyd RF, et al. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med. 2021:e13392.

    Google Scholar 

  128. Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther J Am Soc Gene Ther. 2009;17(12):2096–102.

    Article  CAS  Google Scholar 

  129. Lee SH, Colosi P, Lee H, Ohn YH, Kim SW, Kwak HW, et al. Laser photocoagulation enhances adeno-associated viral vector transduction of mouse retina. Human Gene Ther Method. 2014;25(1):83–91.

    Article  CAS  Google Scholar 

  130. Gamlin PD, Alexander JJ, Boye SL, Witherspoon CD, Boye SE. SubILM injection of AAV for gene delivery to the retina. Methods Mol Biol. 1950;2019:249–62.

    Google Scholar 

  131. Takahashi K, Igarashi T, Miyake K, Kobayashi M, Yaguchi C, Iijima O, et al. Improved intravitreal AAV-mediated inner retinal gene transduction after surgical internal limiting membrane peeling in cynomolgus monkeys. Mol Ther J Am Soc Gene Ther. 2017;25(1):296–302.

    Article  CAS  Google Scholar 

  132. Buning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M. Recent developments in adeno-associated virus vector technology. J Gene Med. 2008;10(7):717–33.

    Article  CAS  PubMed  Google Scholar 

  133. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol. 1996;70(5):3227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol. 1996;70(1):520–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther J Am Soc Gene Ther. 2008;16(10):1648–56.

    Article  CAS  Google Scholar 

  137. Kong F, Li W, Li X, Zheng Q, Dai X, Zhou X, et al. Self-complementary AAV5 vector facilitates quicker transgene expression in photoreceptor and retinal pigment epithelial cells of normal mouse. Exp Eye Res. 2010;90(5):546–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yokoi K, Kachi S, Zhang HS, Gregory PD, Spratt SK, Samulski RJ, et al. Ocular gene transfer with self-complementary AAV vectors. Invest Ophthalmol Vis Sci. 2007;48(7):3324–8.

    Article  PubMed  Google Scholar 

  139. Petersen-Jones SM, Bartoe JT, Fischer AJ, Scott M, Boye SL, Chiodo V, et al. AAV retinal transduction in a large animal model species: comparison of a self-complementary AAV2/5 with a single-stranded AAV2/5 vector. Mol Vis. 2009;15:1835–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ku CA, Chiodo VA, Boye SL, Goldberg AF, Li T, Hauswirth WW, et al. Gene therapy using self-complementary Y733F capsid mutant AAV2/8 restores vision in a model of early onset Leber congenital amaurosis. Hum Mol Genet. 2011;20(23):4569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pang J, Boye SE, Lei B, Boye SL, Everhart D, Ryals R, et al. Self-complementary AAV-mediated gene therapy restores cone function and prevents cone degeneration in two models of Rpe65 deficiency. Gene Ther. 2010;17(7):815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Loeb JE, Cordier WS, Harris ME, Weitzman MD, Hope TJ. Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Hum Gene Ther. 1999;10(14):2295–305.

    Article  CAS  PubMed  Google Scholar 

  143. Zanta-Boussif MA, Charrier S, Brice-Ouzet A, Martin S, Opolon P, Thrasher AJ, et al. Validation of a mutated PRE sequence allowing high and sustained transgene expression while abrogating WHV-X protein synthesis: application to the gene therapy of WAS. Gene Ther. 2009;16(5):605–19.

    Article  CAS  PubMed  Google Scholar 

  144. Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D, et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest. 2008;118(5):1955–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lopes VS, Boye SE, Louie CM, Boye S, Dyka F, Chiodo V, et al. Retinal gene therapy with a large MYO7A cDNA using adeno-associated virus. Gene Ther. 2013;20(8):824–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dong B, Nakai H, **ao W. Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther J Am Soc Gene Ther. 2010;18(1):87–92.

    Article  CAS  Google Scholar 

  147. Hirsch ML, Agbandje-McKenna M, Samulski RJ. Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther J Am Soc Gene Ther. 2010;18(1):6–8.

    Article  CAS  Google Scholar 

  148. Lai Y, Yue Y, Duan D. Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome > or = 8.2 kb. Mol Ther J Am Soc Gene Ther. 2010;18(1):75–9.

    Article  CAS  Google Scholar 

  149. Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther J Am Soc Gene Ther. 2010;18(1):80–6.

    Article  CAS  Google Scholar 

  150. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y, et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol. 1998;72(11):8568–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ghosh A, Duan D. Expanding adeno-associated viral vector capacity: a tale of two vectors. Biotechnol Genet Eng Rev. 2007;24:165–77.

    Article  CAS  PubMed  Google Scholar 

  152. Palfi A, Chadderton N, McKee AG, Blanco Fernandez A, Humphries P, Kenna PF, et al. Efficacy of codelivery of dual AAV2/5 vectors in the murine retina and hippocampus. Hum Gene Ther. 2012;23(8):847–58.

    Article  CAS  PubMed  Google Scholar 

  153. Becirovic E, Nguyen ON, Paparizos C, Butz ES, Stern-Schneider G, Wolfrum U, et al. Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors. Hum Mol Genet. 2014;

    Google Scholar 

  154. Millington-Ward S, Chadderton N, O'Reilly M, Palfi A, Goldmann T, Kilty C, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther J Am Soc Gene Ther. 2011;19(4):642–9.

    Article  CAS  Google Scholar 

  155. Trapani I, Colella P, Sommella A, Iodice C, Cesi G, de Simone S, et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med. 2014;6(2):194–211.

    Article  CAS  PubMed  Google Scholar 

  156. Dyka FM, Boye SL, Chiodo VA, Hauswirth WW, Boye SE. Dual adeno-associated virus vectors result in efficient in vitro and in vivo expression of an oversized gene, MYO7A. Human Gene Ther Method. 2014;25(2):166–77.

    Article  CAS  Google Scholar 

  157. Trapani I. Adeno-associated viral vectors as a tool for large gene delivery to the retina. Genes (Basel). 2019;10(4)

    Google Scholar 

  158. Carvalho LS, Turunen HT, Wassmer SJ, Luna-Velez MV, **ao R, Bennett J, et al. Evaluating efficiencies of dual AAV approaches for retinal targeting. Front Neurosci. 2017;11:503.

    Article  PubMed  PubMed Central  Google Scholar 

  159. McClements ME, Barnard AR, Singh MS, Charbel Issa P, Jiang Z, Radu RA, et al. An AAV dual vector strategy ameliorates the stargardt phenotype in Adult Abca4(-/-) mice. Hum Gene Ther. 2019;30(5):590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tornabene P, Trapani I, Minopoli R, Centrulo M, Lupo M, de Simone S, et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci Transl Med. 2019, 11(492)

    Google Scholar 

  161. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28(1):92–5.

    Article  CAS  PubMed  Google Scholar 

  162. Annear MJ, Bartoe JT, Barker SE, Smith AJ, Curran PG, Bainbridge JW, et al. Gene therapy in the second eye of RPE65-deficient dogs improves retinal function. Gene Ther. 2011;18(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  163. Le Meur G, Stieger K, Smith AJ, Weber M, Deschamps JY, Nivard D, et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther. 2007;14(4):292–303.

    Article  CAS  PubMed  Google Scholar 

  164. Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, Redmond TM, et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci. 2003;44(4):1663–72.

    Article  PubMed  Google Scholar 

  165. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med. 2008;358(21):2231–9.

    Article  CAS  PubMed  Google Scholar 

  166. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A. 2008;105(39):15112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19(10):979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med. 2008;358(21):2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cideciyan AV, Jacobson SG, Beltran WA, Sumaroka A, Swider M, Iwabe S, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A. 2013;110(6):E517–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24.

    Article  CAS  PubMed  Google Scholar 

  171. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Xue K, Jolly JK, Barnard AR, Rudenko A, Salvetti AP, Patricio MI, et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat Med. 2018;24(10):1507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schön C, Biel M, Michalakis S. Gene replacement therapy for retinal CNG channelopathies. Mol Gene Genom MGG. 2013;288(10):459–67.

    Article  CAS  Google Scholar 

  174. Komaromy AM, Alexander JJ, Rowlan JS, Garcia MM, Chiodo VA, Kaya A, et al. Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet. 2010;19(13):2581–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pang JJ, Deng WT, Dai X, Lei B, Everhart D, Umino Y, et al. AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia. PLoS One. 2012;7(4):e35250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tessitore A, Parisi F, Denti MA, Allocca M, Di Vicino U, Domenici L, et al. Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model. Mol Ther J Am Soc Gene Ther. 2006;14(5):692–9.

    Article  CAS  Google Scholar 

  177. LaVail MM, Yasumura D, Matthes MT, Drenser KA, Flannery JG, Lewin AS, et al. Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long-term survival and late-stage therapy. Proc Natl Acad Sci U S A. 2000;97(21):11488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lewin AS, Drenser KA, Hauswirth WW, Nishikawa S, Yasumura D, Flannery JG, et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med. 1998;4(8):967–71.

    Article  CAS  PubMed  Google Scholar 

  179. Chadderton N, Millington-Ward S, Palfi A, O'Reilly M, Tuohy G, Humphries MM, et al. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol Ther J Am Soc Gene Ther. 2009;17(4):593–9.

    Article  CAS  Google Scholar 

  180. Gorbatyuk M, Justilien V, Liu J, Hauswirth WW, Lewin AS. Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp Eye Res. 2007;84(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  181. Gorbatyuk M, Justilien V, Liu J, Hauswirth WW, Lewin AS. Suppression of mouse rhodopsin expression in vivo by AAV mediated siRNA delivery. Vis Res. 2007;47(9):1202–8.

    Article  CAS  PubMed  Google Scholar 

  182. Gorbatyuk MS, Pang JJ, Thomas J Jr, Hauswirth WW, Lewin AS. Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach. Mol Vis. 2005;11:648–56.

    CAS  PubMed  Google Scholar 

  183. Mao H, Gorbatyuk MS, Rossmiller B, Hauswirth WW, Lewin AS. Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice. Hum Gene Ther. 2012;23(4):356–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. O'Reilly M, Palfi A, Chadderton N, Millington-Ward S, Ader M, Cronin T, et al. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet. 2007;81(1):127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cideciyan AV, Sudharsan R, Dufour VL, Massengill MT, Iwabe S, Swider M, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci U S A. 2018;115(36):E8547–E56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gottlieb JL. Age-related macular degeneration. JAMA. 2002;288(18):2233–6.

    Article  PubMed  Google Scholar 

  187. Bourne RR, Jonas JB, Flaxman SR, Keeffe J, Leasher J, Naidoo K, et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990–2010. Br J Ophthalmol. 2014;98(5):629–38.

    Article  PubMed  Google Scholar 

  188. Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE. Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol. 2000;157(1):135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kliffen M, Sharma HS, Mooy CM, Kerkvliet S, de Jong PT. Increased expression of angiogenic growth factors in age-related maculopathy. Br J Ophthalmol. 1997;81(2):154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T, et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology. 2009;116(1):57–65.

    Article  PubMed  Google Scholar 

  191. Chen YY, Chou P, Huang YF, Chien HJ, Wu YC, Lee CC, et al. Repeated intravitreal injections of antivascular endothelial growth factor in patients with neovascular age-related macular degeneration may increase the risk of ischemic optic neuropathy. BMC Ophthalmol. 2019;19(1):268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Askou AL, Pournaras JA, Pihlmann M, Svalgaard JD, Arsenijevic Y, Kostic C, et al. Reduction of choroidal neovascularization in mice by adeno-associated virus-delivered anti-vascular endothelial growth factor short hairpin RNA. J Gene Med. 2012;14(11):632–41.

    Article  CAS  PubMed  Google Scholar 

  193. Lai CM, Estcourt MJ, Wikstrom M, Himbeck RP, Barnett NL, Brankov M, et al. rAAV.sFlt-1 gene therapy achieves lasting reversal of retinal neovascularization in the absence of a strong immune response to the viral vector. Invest Ophthalmol Vis Sci. 2009;50(9):4279–87.

    Article  PubMed  Google Scholar 

  194. Maclachlan TK, Lukason M, Collins M, Munger R, Isenberger E, Rogers C, et al. Preclinical safety evaluation of AAV2-sFLT01- a gene therapy for age-related macular degeneration. Mol Ther J Am Soc Gene Ther. 2011;19(2):326–34.

    Article  CAS  Google Scholar 

  195. Mao Y, Kiss S, Boyer JL, Hackett NR, Qiu J, Carbone A, et al. Persistent suppression of ocular neovascularization with intravitreal administration of AAVrh.10 coding for bevacizumab. Hum Gene Ther. 2011;22(12):1525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Birke MT, Lipo E, Adhi M, Birke K, Kumar-Singh R. AAV-mediated expression of human PRELP inhibits complement activation, choroidal neovascularization and deposition of membrane attack complex in mice. Gene Ther. 2014;21(5):507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Haurigot V, Villacampa P, Ribera A, Bosch A, Ramos D, Ruberte J, et al. Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy. PLoS One. 2012;7(7):e41511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Byrne LC, Dalkara D, Luna G, Fisher SK, Clerin E, Sahel JA, et al. Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. J Clin Invest. 2014;

    Google Scholar 

  199. Lechauve C, Augustin S, Cwerman-Thibault H, Reboussin E, Roussel D, Lai-Kuen R, et al. Neuroglobin gene therapy prevents optic atrophy and preserves durably visual function in Harlequin mice. Mol Ther J Am Soc Gene Ther. 2014;22(6):1096–109.

    Article  CAS  Google Scholar 

  200. McGee Sanftner LH, Abel H, Hauswirth WW, Flannery JG. Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther J Am Soc Gene Ther. 2001;4(6):622–9.

    Article  CAS  Google Scholar 

  201. Colella P, Iodice C, Di Vicino U, Annunziata I, Surace EM, Auricchio A. Non-erythropoietic erythropoietin derivatives protect from light-induced and genetic photoreceptor degeneration. Hum Mol Genet. 2011;20(11):2251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sullivan T, Rex TS. Systemic gene delivery protects the photoreceptors in the retinal degeneration slow mouse. Neurochem Res. 2011;36(4):613–8.

    Article  CAS  PubMed  Google Scholar 

  203. Xu H, Zhang L, Gu L, Lu L, Gao G, Li W, et al. Subretinal delivery of AAV2-mediated human erythropoietin gene is protective and safe in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci. 2014;55(3):1519–30.

    Article  CAS  PubMed  Google Scholar 

  204. Komaromy AM, Rowlan JS, Corr AT, Reinstein SL, Boye SL, Cooper AE, et al. Transient photoreceptor deconstruction by CNTF enhances rAAV-mediated cone functional rescue in late stage CNGB3-achromatopsia. Mol Ther J Am Soc Gene Ther. 2013;21(6):1131–41.

    Article  CAS  Google Scholar 

  205. Cepko CL. Emerging gene therapies for retinal degenerations. J Neurosci Off J Soc Neurosci. 2012;32(19):6415–20.

    Article  CAS  Google Scholar 

  206. Busskamp V, Picaud S, Sahel JA, Roska B. Optogenetic therapy for retinitis pigmentosa. Gene Ther. 2012;19(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  207. Sahel JA, Roska B. Gene therapy for blindness. Annu Rev Neurosci. 2013;36:467–88.

    Article  CAS  PubMed  Google Scholar 

  208. Simunovic MP, Shen W, Lin JY, Protti DA, Lisowski L, Gillies MC. Optogenetic approaches to vision restoration. Exp Eye Res. 2019;178:15–26.

    Article  CAS  PubMed  Google Scholar 

  209. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8(9):1263–8.

    Article  CAS  PubMed  Google Scholar 

  210. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003;100(24):13940–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, et al. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446(7136):633–9.

    Article  CAS  PubMed  Google Scholar 

  212. Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci. 2008;11(6):667–75.

    Article  CAS  PubMed  Google Scholar 

  213. Ivanova E, Pan ZH. Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina. Mol Vis. 2009;15:1680–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Ivanova E, Hwang GS, Pan ZH, Troilo D. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest Ophthalmol Vis Sci. 2010;51(10):5288–96.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron. 2006;50(1):23–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Tomita H, Sugano E, Yawo H, Ishizuka T, Isago H, Narikawa S, et al. Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest Ophthalmol Vis Sci. 2007;48(8):3821–6.

    Article  PubMed  Google Scholar 

  217. Zhang Y, Ivanova E, Bi A, Pan ZH. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci Off J Soc Neurosci. 2009;29(29):9186–96.

    Article  CAS  Google Scholar 

  218. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 2010;329(5990):413–7.

    Article  CAS  PubMed  Google Scholar 

  219. Grossman N, Poher V, Grubb MS, Kennedy GT, Nikolic K, McGovern B, et al. Multi-site optical excitation using ChR2 and micro-LED array. J Neural Eng. 2010;7(1):16004.

    Article  PubMed  Google Scholar 

  220. Tomita H, Sugano E, Murayama N, Ozaki T, Nishiyama F, Tabata K, et al. Restoration of the majority of the visual spectrum by using modified volvox channelrhodopsin-1. Mol Ther J Am Soc Gene Ther. 2014;22(8):1434–40.

    Article  CAS  Google Scholar 

  221. Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, et al. Conversion of channelrhodopsin into a light-gated chloride channel. Science. 2014;344(6182):409–12.

    Article  CAS  PubMed  Google Scholar 

  222. Scholl HP, Strauss RW, Singh MS, Dalkara D, Roska B, Picaud S, et al. Emerging therapies for inherited retinal degeneration. Sci Transl Med. 2016;8(368):368rv6.

    Article  CAS  PubMed  Google Scholar 

  223. Lin B, Koizumi A, Tanaka N, Panda S, Masland RH. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A. 2008;105(41):16009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Caporale N, Kolstad KD, Lee T, Tochitsky I, Dalkara D, Trauner D, et al. LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther J Am Soc Gene Ther. 2011;19(7):1212–9.

    Article  CAS  Google Scholar 

  225. Burnight ER, Giacalone JC, Cooke JA, Thompson JR, Bohrer LR, Chirco KR, et al. CRISPR-Cas9 genome engineering: treating inherited retinal degeneration. Prog Retin Eye Res. 2018;65:28–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A. CRISPR/Cas9-mediated genome editing as a therapeutic approach for leber congenital amaurosis 10. Mol Ther J Am Soc Gene Ther. 2017;25(2):331–41.

    Article  CAS  Google Scholar 

  227. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25(2):229–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Michalakis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Michalakis, S., Gerhardt, MJ., Priglinger, C., Priglinger, S. (2021). Ocular Gene Therapies. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_150-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_150-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation