Recycle of Greywater for Microalgae Biomass Production

  • Chapter
  • First Online:
Management of Greywater in Develo** Countries

Abstract

The potential of greywater to be used as a production medium for biomass lie in the high concentrations of nitrogen and phosphorus as well as the organic matter necessary for microalgae growth. Microalgae have high potential to adapt and utilise nitrogen, phosphate and other nutrients available in wastewater. Other factors which affect the production of biomass in microalgae include light, temperature, aeration and mixing. The effect of pH might also contribute to the quality and quantity of the produced biomass. The critical step in the production of biomass lies in the harvesting of microalgae cells, extraction of the lipids, proteins and carbohydrates. The objective of this review was to identify the criteria required for selecting greywater as a production medium and microalgae species. The harvesting and extractions techniques used in this process are also discussed and also the quality of the produced biomass and the further utilisation based on the toxicity, nutrients values and microbiological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IB (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    Article  CAS  Google Scholar 

  • Adeleke AO, Latiff AAA, Al-Gheethi AA, Daud Z (2017) Optimization of operating parameters of novel composite adsorbent for organic pollutants removal from POME using response surface methodology. Chemosphere 174:232–242

    Article  CAS  Google Scholar 

  • Agwa OK, Abu GO (2014) Utilization of poultry waste for the cultivation of Chlorella sp. for biomass and lipid production. Int J Curr Microbiol App Sci 3(8):1036–1047

    Google Scholar 

  • Ahmad A, Yasin N, Derek C, Lim J (2011) Microalgae as sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15:584–593

    Article  CAS  Google Scholar 

  • Ajayan KV, Selvaraju M, Unnikannan P, Sruthi P (2015) Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int. J. Phytoremed. 17(10):907–916

    Article  CAS  Google Scholar 

  • Al-Gheethi AA (2015) Recycling of sewage sludge as production medium for cellulase enzyme by a Bacillus megaterium strain. International J Rec Org Waste Agri 4(2):105–119

    Article  Google Scholar 

  • Al-Gheethi AA, Norli I (2014) Biodegradation of pharmaceutical residues in sewage treated effluents by Bacillus subtilis 1556WTNC. J Environ Processes 1(4):459–489

    Article  CAS  Google Scholar 

  • Al-Gheethi AA, Norli I, Kadir MOA (2013) Elimination of enteric indicators and pathogenic bacteria in secondary effluents and lake water by solar disinfection (SODIS). J Water Reuse Des. 3(1):39–46

    Article  Google Scholar 

  • Al-Gheethi AA, Norli I, Efaq AN, Bala JD, Al-Amery Ramzy M A (2015) Solar disinfection and lime treatment processes for reduction of pathogenic bacteria in sewage treated effluents and biosolids before reuse for agriculture in Yemen. Water Reuse Des. 5(3):419–429

    CAS  Google Scholar 

  • Al-Gheethi AA, Mohamed RM, Jais NM, Efaq AN, Wurochekke AA, Amir-Hashim MK (2017) Influence of pathogenic bacterial activity on removal of nutrients from wet market wastewater by Scenedesmus sp. Water and Health Journal (Online)

    Google Scholar 

  • Alva MS, De Luna-pabello VM, Cadena E, Ortíz E (2013) Green microalga Scenedesmus actus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Biores Technol 146:744–748

    Article  CAS  Google Scholar 

  • Arumugam M, Agarwal A, Arya AC, Ahmed Z (2013) Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Biores Technol 131:246–249

    Article  CAS  Google Scholar 

  • Atiku A, Mohamed RMSR, Al-Gheethi AA, Wurochekke AA, Kassim Amir H (2016) Harvesting microalgae biomass from the phycoremediation process of greywater. Environ Sci Poll Res 23(24):24624–24641

    Article  CAS  Google Scholar 

  • Azarpira H, Dhumal K, Pondhe G (2014) Application of phycoremediation technology in the treatment of sewage water to reduce pollution load. Adv Environ Biol 2419–2424

    Google Scholar 

  • Bala JD, Lalung J, Al-Gheethi AA, Norli I (2016) A Review on biofuel and bioresources for environmental applications. In: Renewable energy and sustainable technologies for building and environmental applications. Springer publishing, New York, pp 205–225

    Chapter  Google Scholar 

  • Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P, Bandopadhyay R (2013) Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant. Carbohydrate Poly 92(1):675–681

    Article  CAS  Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: A review. Renew Sustain Energy Rev 41:1489–1500

    Article  Google Scholar 

  • Bich NN, Yaziz MI, Bakti NA (1999) Combination of Chlorella vulgaris and Eichhornia crassipes for wastewater nitrogen removal. Water Res 33(10):2357–2362

    Article  CAS  Google Scholar 

  • Bilad MR, Vandamme D, Foubert I, Muylaert K, Vankelecom IF (2012) Harvesting microalgal biomass using submerged microfiltration membranes. Bioresoure Technol 111:343–352

    Article  CAS  Google Scholar 

  • Bohdziewicz J, Sroka E, Korus I (2003) Application of ultrafiltration and reverse osmosis to the treatment of the wastewater produced by the meat industry. Polish J Environ Stud 12(3):269–274

    CAS  Google Scholar 

  • Brar A, Kumar M, Vivekanand V, Pareek N (2017) Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects. 3 Biotech 7(1):18

    Article  Google Scholar 

  • Caixeta C, Cammarota M, Xavier A (2002) Slaughterhouse house wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor. Biores Technol 81:61–69

    Article  CAS  Google Scholar 

  • Cassidy KO (2011). Evaluating algal growth at different temperatures. MSc Theses and Dissertations, Biosystems and Agricultural Engineering. University of Kentucky, United States

    Google Scholar 

  • Cerff M, Morweiser M, Dillschneider R, Michel A, Menzel K, Posten C (2012) Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration. Biores Technol 118:289–295

    Article  CAS  Google Scholar 

  • Chen YM, Liu JC, Ju YH (1998) Flotation removal of algae from water. Colloid Surface B 12(1):49–55

    Article  CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Biores Technol 102(1):71–81

    Article  CAS  Google Scholar 

  • Cheng YL, Juang YC, Liao GY, Tsai PW, Ho SH, Yeh KL, Lee DJ (2011) Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Biores Technol 102(1):82–87

    Article  CAS  Google Scholar 

  • Dassey AJ, Theegala CS (2013) Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Biores Technol 128:241–245

    Article  CAS  Google Scholar 

  • De Godos I, Guzman HO, Soto R, García-Encina PA, Becares E, Muñoz R, Vargas VA (2011) Coagulation/flocculation-based removal of algal–bacterial biomass from piggery wastewater treatment. Biores Technol 102(2):923–927

    Article  CAS  Google Scholar 

  • Efaq AN, Nagao NNNA, Rahman H, Al-Gheethi AA, Shahadat M, Kadir MOA (2015) Supercritical Carbon dioxide as non-thermal alternative technology for safe handling of clinical wastes. J Environ Process 2:797–822

    Article  CAS  Google Scholar 

  • Efaq AN, Rahman NNNA, Nagao H, Alkarkhi AM, Al-Gheethi AA, Tengku NTL, Kadir MOA (2016). Supercritical fluid CO2 technique for destruction of pathogenic fungal spores in solid clinical wastes. CLEAN—Soil, Air, Water 44(12):1700–1708

    Google Scholar 

  • Efaq AN, Rahman NNA, Nagao H, Al-Gheethi AA, Kadir MOA (2017) Inactivation of Aspergillus Spores in Clinical Wastes by Supercritical Carbon Dioxide. Arab J Sci Eng (AJSE) 42(1):39–51

    Article  CAS  Google Scholar 

  • Fagiri YMA, Salleh A, El-Nagerabi SA (2013) Influence of chemical and environmental factors on the growth performance of Spirulina platensis strain SZ100. J. Algal Biomass Utln 4(2):7–15

    Google Scholar 

  • Gani P, Sunar NM, Matias-Peralta HM, Latiff A, Aziz A, Kamaludin NS, Er CM (2015) Experimental study for phycoremediation of Botryococcus sp. on greywater. Appl. Mech. Mat. 773:1312–1317

    Google Scholar 

  • Gentili FG (2014) Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Biores Technol 169:27–32

    Article  CAS  Google Scholar 

  • Godos I, Vargas VA, Blanco S, Gonzalez MCG, Soto R, Garcia-Encina PA, Becares E, Munoz R (2012) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Biores Technol 101:5150–5158

    Article  CAS  Google Scholar 

  • Gokulan R, Sathish N, Kumar RP (2013) Treatment of grey water using hydrocarbon producing Botryococcus braunii. Int J Chem Tech Res 5(3):1390–1392

    CAS  Google Scholar 

  • Gong Q, Feng Y, Kang L, Luo M, Yang J (2014) Effects of light and pH on cell density of Chlorella Vulgaris. Energy Procedia 64:2012–2015

    Article  CAS  Google Scholar 

  • Gorin KV, Sergeeva YE, Butylin VV, Komova AV, Pojidaev VM, Badranova GU, Shapovalova AA, Konova IA, Gotovtsev BM (2015) Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae. Biores Technol 193:178–184

    Article  CAS  Google Scholar 

  • Guerrero-Cabrera L, Rueda JA, García-Lozano H, Navarro AK (2014) Cultivation of Monoraphidium sp., Chlorella sp. and Scenedesmus sp. algae in batch culture using Nile tilapia effluent. Biores Technol 161:455–460

    Article  CAS  Google Scholar 

  • Guo SL, Zhao XQ, Wan C, Huang ZY, Yang YL, Alam A, Ho SH, Bai FW, Chang GS (2012) Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Biores Technol 145:285–289

    Article  CAS  Google Scholar 

  • Gupta SK, Ansari FA, Shriwastav A, Sahoo NK, Rawat I, Bux F (2016) Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J. Cleaner Prod. 115:255–264

    Article  CAS  Google Scholar 

  • Gutiérrez R, Ferrer I, García J, Uggetti E (2015) Influence of starch on microalgal biomass recovery, settleability and biogas production. Biores Technol 185:341–345

    Article  CAS  Google Scholar 

  • Hamid ASH, Lananan F, Din WNS, Su SL (2014) Harvesting microalgae, Chlorella sp. by bio-flocculation of Moringa oleifera seed derivatives from aquaculture wastewater phytoremediation. Int Biodeterioration Biodegrad, 270–275

    Google Scholar 

  • Hanotu J, Bandulasena H, Zimmerman W (2012) Microflotation performance for algal separation. Biotechnol Bioengineer 109:1663–1673

    Article  CAS  Google Scholar 

  • Hauwa A, Mohamed RM, Al-Gheethi AA, Wurochekke AA, Amir HK (2017a) Optimizing Botryococcus sp. biomass harvesting from greywater by natural coagulants. Waste and Biomass Valorization (online)

    Google Scholar 

  • Hauwa A, Mohamed RMSR, Al-Gheethi AA, Wurochekke AA, Hashim MA (2017b). Harvesting of Botryococcus sp. biomass from greywater by natural coagulants. Waste Biomass Valorization 1–13

    Google Scholar 

  • Hejazi M, Wijeffels R, Holwerda E (2004) Milking microalga Dunaliella salina for β-carotene production in two-phase bioreactors. Biotechnol Bioeng 85:475–481

    Article  CAS  Google Scholar 

  • Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Res Ind 10:1–14

    Article  Google Scholar 

  • Hu YR, Xu L, Feng W (2014) A magnetic separator for efficient microalgae harvesting. Biores Technol 158:388–391

    Article  CAS  Google Scholar 

  • Imtiazuddin S, Mumtaz M, Mallick KA (2012) Pollutants of wastewater characteristics in textile industries. J Basic Appl Sci 8:554–556

    CAS  Google Scholar 

  • Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem Eng Process: Process Intensification 48(1):306–310

    Article  CAS  Google Scholar 

  • Jais NM, Mohamed RMSR, Al-Gheethi AA, Hashim Amir (2017) Dual role of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol Environ Policy 19(1):37–52

    Article  CAS  Google Scholar 

  • Ji MK, Kim HC, Sapireddy VR, Yun HS, Abou-Shanab RA, Choi J, Jeon BH (2013) Simultaneous nutrient removal and lipid production from pre-treated piggery wastewater by Chlorella vulgaris YSW-04. Appl Microbiol Biotechnol 97(6):2701–2710

    Article  CAS  Google Scholar 

  • Kalin M, Wheeler WN, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177

    Article  CAS  Google Scholar 

  • Kamarudin KF, Yaakob Z, Rajkumar R, Takriff MS, Tasirin S (2013) Bioremediation of palm oil mill effluents (POME) using Scenedesmus dimorphus and Chlorella vulgaris. Adv Sci Lett 19(10):2914–2918

    Article  CAS  Google Scholar 

  • Kang HK, Salim HM, Akter N, Kim DW, Kim JH, Bang HT, Suh OS (2013) Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J Appl Poultry Res 22(1):100–108

    Article  CAS  Google Scholar 

  • Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J (2007) Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Biores Technol 98(11):2220–2228

    Article  CAS  Google Scholar 

  • Kim G, Yun Y, Shin H, Kim H, Han J (2015) Scenedesmus-based treatment of nitrogen and phosphorus from effluent of anaerobic digester and bio-oil production. Biores Technol 196:235–240

    Article  CAS  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35:300–313

    Article  Google Scholar 

  • Kotteswari M, Murugesan S, Kumar R (2012) Phycoremediation of dairy effluent by using the microalgae Nostoc sp. Int J Environ Res Dev 2(1):35–43

    Google Scholar 

  • Kumar RR, Rao PH, Arumugam M (2015) Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res 2:61. https://doi.org/10.3389/fenrg.2014.00061

    Article  Google Scholar 

  • Kuo CM, Chen TY, Lin TH, Kao CY, Lai JT, Chang JS, Lin CS (2015) Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Biores Technol 194:32

    Article  CAS  Google Scholar 

  • Kurniawati H, Ismadji S, Liu J (2014) Microalgae harvesting by flotation using natural saponin and chitosan. Biores Technol 166:429–434

    Article  CAS  Google Scholar 

  • Lee K, Lee CG (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol Bioprocess Eng 6(3):194–199

    Article  CAS  Google Scholar 

  • Lekshmi B, Joseph R, Jose A, Abinandan S, Shanthakumar S (2015) Studies on reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and Scenedesmus abundans. Alex Eng J 54(4):1291–1296

    Article  Google Scholar 

  • Letelier-Gordo CO, Holdt SL, De Francisci D, Karakashev DB, Angelidaki I (2014) Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch. Biores Technol 167:214–218

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Biores Technol 102(8):5138–5144

    Article  CAS  Google Scholar 

  • Lim JK, Chieh DCJ, Jalak SA, Toh PY, Yasin NHM, Ng BW, Ahmad AL (2012) Rapid magnetophoretic separation of microalgae. Small 8(11):1683–1692

    Article  CAS  Google Scholar 

  • Liu JC, Chen YM, Ju YH (1999) Separation of algal cells from water by column flotation. Separ Sci Technol 34(11):2259–2272

    Article  CAS  Google Scholar 

  • Liu D, Li F, Zhang B (2009) Removal of algal blooms in freshwater using magnetic polymer. Water Sci Technol 59(6):1085–1091

    Article  CAS  Google Scholar 

  • Liu J, Zhu Y, Tao Y, Zhang Y, Li A, Li T, Zhang C (2013) Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels 6(1):1

    Article  CAS  Google Scholar 

  • Lu Q, Zhou W, Min M, Ma X, Chandra C, Doan YT (2015) Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Biores Technol 198:189–197

    Article  CAS  Google Scholar 

  • Mahale VE, Chaugule BB (2013) Optimization of freshwater green alga Scenedesmus incrassatulus for biomass production and augmentation of fatty acids under abiotic stress conditions. Phykos 43(1):22–31

    Google Scholar 

  • Maizatul AY, Mohamed RMSR, Al-Gheethi AA, Hashim MA (2017) An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater. Int Aquat Res:1–17

    Google Scholar 

  • Makareviciene V, Skorupskaite V, Levisauskas D, Andruleviciute V, Kazancev K (2014) The optimization of biodiesel fuel production from microalgae oil using response surface methodology. Int J Green Energy 11(5):527–541

    Article  CAS  Google Scholar 

  • Maroneze MM, Barin JS, Menezes CRD, Queiroz MI, Zepka LQ, Jacob-Lopes E (2014) Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors. Scientia Agricola 71(6):521–524

    Article  Google Scholar 

  • Matos C, Santos M, Nobre B, Gouveia L (2013) Nannochloropsis sp. biomass recovery by Electro-Coagulation for biodiesel and pigment production. Biores Technol 134:219–226

    Article  CAS  Google Scholar 

  • McKinney RE (2004) Environmental pollution control microbiology: a fifty-year perspective. CRC Press, Boca Raton

    Book  Google Scholar 

  • Michel J, Luís M, Paola M, Pirolli M, Michelon W, Moreira H (2016) Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Biores Technol 202:67–75

    Article  CAS  Google Scholar 

  • Michels MH, Vaskoska M, Vermuë MH, Wijffels RH (2014) Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm. Water Res 2014(65):290–296

    Article  CAS  Google Scholar 

  • Min M, Wang L, Li Y, Mohr MJ, Hu B, Zhou W, Ruan R (2011) Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol 165(1):123–137

    Article  CAS  Google Scholar 

  • Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A Review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546. https://doi.org/10.3389/fmicb.2016.00546

    Article  Google Scholar 

  • Munir NE, Sharif NA, Shagufta N, Saleem FA, Manzoor FA (2013) Harvesting and processing of microalgae biomass fractions for biodiesel production (A review). Sci Tech Dev 32:235–243

    Google Scholar 

  • Ndikubwimana T, Zeng X, Liu Y, Chang JS, Lu Y (2014) Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Res 6:186–193

    Article  Google Scholar 

  • Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Biores Technol 114:542–548

    Article  CAS  Google Scholar 

  • Pahazri N, Mohamed RMS, Al-Gheethi AA, Amir Hashim (2016) Production and harvesting of microalgae biomass from wastewater, a critical review. Environ Technol Rev 5(1):39–56. Online

    Google Scholar 

  • Park J, Craggs R, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Biores Technol 102:35–42

    Article  CAS  Google Scholar 

  • Pathak VV, Singh DP, Kothari R, Chopra AK (2014) Phycoremediation of textile wastewater by unicellular microalga Chlorella pyrenoidosa. Cell Mol Biol 60(5):35–40

    CAS  Google Scholar 

  • Pérez-Pazos JV, Fernández-Izquierdo P (2011) Synthesis of neutral lipids in Chlorella sp. under different light and carbonate conditions. CT&F-Ciencia, Tecnología y Futuro 4(4):47–58

    Google Scholar 

  • Petrusevski B, Bolier G, Van Breemen AN, Alaerts GJ (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29:1419–1424

    Article  CAS  Google Scholar 

  • Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12(3–5):395–400

    Article  Google Scholar 

  • Pragya N, Pandey KK, Sahoo P (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171

    Article  CAS  Google Scholar 

  • Prochazkova G, Safarik I, Branyik T (2013) Harvesting microalgae with microwave synthesized magnetic microparticles. Biores Technol 130:472–477

    Article  CAS  Google Scholar 

  • Qin JG, Li Y (2006) Optimization of the growth environment of Botryococcus braunii strain CHN 357. J Freshwater Ecol 21(1):169–176

    Article  CAS  Google Scholar 

  • Rahman A, Ellis JT, Miller CD (2012) Bioremediation of domestic wastewater and production of bioproducts from microalgae using waste stabilization ponds. J Bioremed Biodeg 3:113

    Article  CAS  Google Scholar 

  • Rai MP, Gautom T, Sharma N (2015) Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. J Biol Sci 15(4):260–267

    Article  CAS  Google Scholar 

  • Ramsundar P, Guldhe A, Singh P, Bux F (2017) Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Biores Technol 227:82–92

    Article  CAS  Google Scholar 

  • Rao HP, Kumar R, Raghavan BG, Subramanian VV, Sivasubramanian V (2011) Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water SA 37(1):07–14

    Google Scholar 

  • Rasala B, Mayfield S (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123:227–239

    Article  CAS  Google Scholar 

  • Rashid N, Rehmana SU, Han JI (2013) Rapid harvesting of freshwater microalgae using chitosan. Process Biochem 48:1107–1110

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Riano B, Blanco S, Becares E, Garcia-Gonzalez MC (2016) Bioremediation and biomass harvesting of anaerobic digested cheese whey in microalgal-based systems for lipid production. Ecol Eng 97:40–45

    Article  Google Scholar 

  • Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15:139–155

    Article  CAS  Google Scholar 

  • Ruiz-Martinez A, Garcia NM, Romero I, Seco A, Ferrer J (2012) Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Biores Technol 126:247–253

    Article  CAS  Google Scholar 

  • Sengar RMS, Singh KK, Singh S (2011) Application of phycoremediation technology in the treatment of sewage water to reduce pollution load. Indian J Sci Res 2(4):33–39

    CAS  Google Scholar 

  • Shekhawat K, Rathore SS, Premi OP, Kandpal BK, Chauhan JS (2012) Advances in agronomic management of Indian mustard (Brassica juncea (L.) Czernj. Cosson): an overview. Int J Agron

    Article  Google Scholar 

  • Silambarasan T, Vikramathithan M, Dhandapani R (2012) Biological treatment of dairy effluent by microalgae. World J Sci Techno. 2(7):132–134

    Google Scholar 

  • Sim TS, Goh A, Becker EW (1988) Comparison of centrifugation, dissolved air flotation and drum filtration techniques for harvesting sewage-grown algae. Biomass 16:51–62

    Article  Google Scholar 

  • Song M, Pei H, Hu W, Zhang S, Ma G, Han L, Ji Y (2014) Identification and characterization of a freshwater microalga Scenedesmus SDEC-8 for nutrient removal and biodiesel production. Biores Technol 162:129–135

    Article  CAS  Google Scholar 

  • Surendhiran D, Vijay M (2013) Study on flocculation efficiency for harvesting nannochloropsis oculata for biodiesel production. Int J Chem Tech Res 5(4):1761–1769

    CAS  Google Scholar 

  • Teixeira CM, Kirsten FV, Teixeira PCN (2012) Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. J Appl Phycol 24(3):557–563

    Article  CAS  Google Scholar 

  • Toh PY, Yeap SP, Kong LP, Ng BW, Chan DJC, Ahmad AL, Lim JK (2012) Magnetophoretic removal of microalgae from fishpond water: feasibility of high gradient and low gradient magnetic separation. Chem Eng J 211:22–30

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sust Energy 2(1):012701

    Article  CAS  Google Scholar 

  • Uduman N, Bourniquel V, Danquah M, Hoadley A (2011) A parametric study of electrocoagulation as a recovery process of marine microalgae for biodiesel production. Chem Eng J 174:249–257

    Article  CAS  Google Scholar 

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530

    Article  Google Scholar 

  • Vandamme D, Eyley S, Van den Mooter G, Muylaert K, Thielemans W (2015) Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris. Biores Technol 194:270–275

    Article  CAS  Google Scholar 

  • Wan C, Zhao XQ, Guo SL, Alam MA, Bai FW (2013) Bioflocculant production from Solibacillus silvestries WO1 and its application in cost effective harvest of marine microalgae Nannochloris oceanica by flocculation. Biores Technol 135:207–212

    Article  CAS  Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Biores Technol 101(8):2623–2628

    Article  CAS  Google Scholar 

  • Wurochekke AA, Mohamed RMS, Al-Gheethi AA, Amir HM, Matias-Peralta HM (2016) Household greywater treatment methods using natural materials and their hybrid system. J Water Health. Online

    Article  CAS  Google Scholar 

  • **n L, Hong-Ying H, Ke G, Ying-Xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Biores Technol 101:5494–5500

    Article  CAS  Google Scholar 

  • **n L, Ying HH, ** ZY (2011) Growth and lipid accumulation of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Biores Technol 102:3098–3102

    Article  CAS  Google Scholar 

  • Xu L, Wang F, Li HZ, Hu ZM, Guo C, Liu CZ (2010) Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae. J Chem Technol Biotechnol 85(11):1504–1507

    CAS  Google Scholar 

  • Xu L, Guo C, Wang F, Zheng S, Liu C (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Biores Technol 102:10047–10051

    Article  CAS  Google Scholar 

  • Yaakob Z, Ali E, Mohamad M, Takrif MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res 21(6):1–10

    Google Scholar 

  • Yao L, Shi J, Miao X (2015) Mixed wastewater coupled with CO2 for microalgae culturing and nutrient removal. PLoS ONE 10(9):e0139117

    Article  CAS  Google Scholar 

  • Zhang X, Hu Q, Sommerfeld M, Puruhito E, Chen Y (2010) Harvesting algal biomass for biofuels using ultrafiltration membranes. Biores Technol 101(14):5297–5304

    Article  CAS  Google Scholar 

  • Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H (2012) Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Biores Technol 112:212–220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also wish to thank The Ministry of Science, Technology and Innovation (MOSTI) for supporting this research under E-Science Fund (02-01-13-SF0135) and also the Research Management Centre (RMC) UTHM under grant IGSP U682 for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adel Ali Saeed Al-Gheethi or Radin Maya Saphira Radin Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Gheethi, A.A.S. et al. (2019). Recycle of Greywater for Microalgae Biomass Production. In: Radin Mohamed, R., Al-Gheethi, A., Mohd Kassim, A. (eds) Management of Greywater in Develo** Countries. Water Science and Technology Library, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-90269-2_11

Download citation

Publish with us

Policies and ethics

Navigation