Indications and Techniques for Anterior Thoracolumbar Resections and Reconstructions

  • Chapter
  • First Online:
Metastatic Spine Disease

Abstract

Metastatic spinal tumors are the most common spinal neoplasms and often lead to significant morbidity due to neurological dysfunction and axial pain. Indications for resection and subsequent reconstruction of thoracolumbar spine tumors include intractable pain, impending spinal instability, progressive compression of the spinal cord by bony elements, and symptomatic compression of those neural structures by radio-resistant tumors. When deciding on a surgical approach, the location of the pathology and any neural compression should be considered first. The predicted life expectancy of each patient (Tokuhashi score) should also be strongly considered when considering indications for surgery as well as determining a specific reconstruction method. Although posterior approaches are often used for spinal tumor resection, there are anterior approaches to the cervical spine, cervicothoracic junction, thoracic spine, thoracolumbar junction, and lumbar spine that will be reviewed in detail below. Each surgical approach has its advantages and disadvantages and should be carefully tailored for each patient, with the deciding focus on the location of the pathology within the spinal column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 126.59
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gokaslan ZL. Spine surgery for cancer. Curr Opin Oncol. 1996;8(3):178–81.

    Article  CAS  PubMed  Google Scholar 

  2. Byrne TN. Spinal cord compression from epidural metastases. N Engl J Med. 1992;327(9):614–9.

    Article  CAS  PubMed  Google Scholar 

  3. Fourney DR, Gokaslan ZL. Spinal instability and deformity due to neoplastic conditions. Neurosurg Focus. 2003;14(1):e8.

    Article  PubMed  Google Scholar 

  4. Fisher CG, Rhines LD, Bettegowda C, et al. Introduction to focus issue II in spine oncology: evidence-based medicine recommendations for spine oncology. Spine. 2016;41(Suppl 20):S159–s162.

    Article  PubMed  Google Scholar 

  5. Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine. 2017;26(4):513–8.

    Article  PubMed  Google Scholar 

  6. Kim D, Lim JY, Shim KW, et al. Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Yonsei Med J. 2017;58(2):453–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Altaf F, Weber M, Dea N, et al. Evidence-based review and survey of expert opinion of reconstruction of metastatic spine tumors. Spine. 2016;41(Suppl 20):S254–s261.

    Article  PubMed  Google Scholar 

  8. Glennie RA, Rampersaud YR, Boriani S, et al. A systematic review with consensus expert opinion of best reconstructive techniques after osseous En bloc spinal column tumor resection. Spine. 2016;41(Suppl 20):S205–s211.

    Article  PubMed  Google Scholar 

  9. Wang Z, Wang J, Zhuang H, Wang P, Yuan Z. Stereotactic body radiation therapy induces fast tumor control and symptom relief in patients with iliac lymph node metastasis. Sci Rep. 2016;6:37987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verma V, Shostrom VK, Kumar SS, et al. Multi-institutional experience of stereotactic body radiotherapy for large (≥5 centimeters) non-small cell lung tumors. Cancer. 2017;123(4):688–96.

    Article  PubMed  Google Scholar 

  11. Thibault I, Whyne CM, Zhou S, et al. Volume of lytic vertebral body metastatic disease quantified using computed tomography-based image segmentation predicts fracture risk after spine stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2017;97(1):75–81.

    Article  PubMed  Google Scholar 

  12. Tanadini-Lang S, Rieber J, Filippi AR, et al. Nomogram based overall survival prediction in stereotactic body radiotherapy for oligo-metastatic lung disease. Radiother Oncol. 2017;123:182.

    Article  CAS  PubMed  Google Scholar 

  13. Chang JH, Shin JH, Yamada YJ, et al. Stereotactic body radiotherapy for spinal metastases: what are the risks and how do we minimize them? Spine. 2016;41(Suppl 20):S238–s245.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zairi F, Arikat A, Allaoui M, Marinho P, Assaker R. Minimally invasive decompression and stabilization for the management of thoracolumbar spine metastasis. J Neurosurg Spine. 2012;17(1):19–23.

    Article  PubMed  Google Scholar 

  15. Di Martino A, Caldaria A, De Vivo V, Denaro V. Metastatic epidural spinal cord compression. Expert Rev Anticancer Ther. 2016:1–10.

    Google Scholar 

  16. Bakar D, Tanenbaum JE, Phan K, et al. Decompression surgery for spinal metastases: a systematic review. Neurosurg Focus. 2016;41(2):E2.

    Article  PubMed  Google Scholar 

  17. Fourney DR, Gokaslan ZL. Use of “MAPs” for determining the optimal surgical approach to metastatic disease of the thoracolumbar spine: anterior, posterior, or combined. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine. 2005;2(1):40–9.

    Article  PubMed  Google Scholar 

  18. Druschel C, Disch AC, Melcher I, et al. Surgical management of recurrent thoracolumbar spinal sarcoma with 4-level total en bloc spondylectomy: description of technique and report of two cases. Eur Spine J. 2012;21(1):1–9.

    Article  PubMed  Google Scholar 

  19. Aoude A, Fortin M, Aldebeyan S, et al. The revised Tokuhashi score; analysis of parameters and assessment of its accuracy in determining survival in patients afflicted with spinal metastasis. Eur Spine J. 2016.

    Google Scholar 

  20. Eap C, Tardieux E, Goasgen O, et al. Tokuhashi score and other prognostic factors in 260 patients with surgery for vertebral metastases. Orthop Traumatol Surg Res. 2015;101(4):483–8.

    Article  CAS  PubMed  Google Scholar 

  21. Tokuhashi Y, Matsuzaki H, Oda H, Oshima M, Ryu J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine. 2005;30(19):2186–91.

    Article  PubMed  Google Scholar 

  22. Laufer I, Zuckerman SL, Bird JE, et al. Predicting neurologic recovery after surgery in patients with deficits secondary to MESCC: systematic review. Spine. 2016;41(Suppl 20):S224–s230.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Payer M, Sottas C. Mini-open anterior approach for corpectomy in the thoracolumbar spine. Surg Neurol. 2008;69(1):25–31; discussion 31-22.

    Article  PubMed  Google Scholar 

  24. Faciszewski T, Winter RB, Lonstein JE, Denis F, Johnson L. The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. A review of 1223 procedures. Spine. 1995;20(14):1592–9.

    Article  CAS  PubMed  Google Scholar 

  25. Perry TG, Mageswaran P, Colbrunn RW, Bonner TF, Francis T, McLain RF. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage. J Neurosurg Spine. 2014;21(3):481–8.

    Article  PubMed  Google Scholar 

  26. Mannen EM, Anderson JT, Arnold PM, Friis EA. Mechanical analysis of the human cadaveric thoracic spine with intact rib cage. J Biomech. 2015;48(10):2060–6.

    Article  PubMed  Google Scholar 

  27. Arana E, Kovacs FM, Royuela A, Asenjo B, Perez-Ramirez U, Zamora J. Spine instability neoplastic score: agreement across different medical and surgical specialties. Spine J. 2016;16(5):591–9.

    Article  PubMed  Google Scholar 

  28. Fourney DR, Frangou EM, Ryken TC, et al. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol. 2011;29(22):3072–7.

    Article  PubMed  Google Scholar 

  29. Versteeg AL, Verlaan JJ, Sahgal A, et al. The spinal instability neoplastic score: impact on oncologic decision-making. Spine. 2016;41(Suppl 20):S231–s237.

    Article  PubMed  Google Scholar 

  30. Ha KY, Kim YH, Ahn JH, Park HY. Factors affecting survival in patients undergoing palliative spine surgery for metastatic lung and hepatocellular cancer: dose the type of surgery influence the surgical results for metastatic spine disease? Clin Orthop Surg. 2015;7(3):344–50.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zadnik PL, Goodwin CR, Karami KJ, et al. Outcomes following surgical intervention for impending and gross instability caused by multiple myeloma in the spinal column. J Neurosurg Spine. 2015;22(3):301–9.

    Article  PubMed  Google Scholar 

  32. Zadnik PL, Hwang L, Ju DG, et al. Prolonged survival following aggressive treatment for metastatic breast cancer in the spine. Clin Exp Metastasis. 2014;31(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  33. Sahgal A, Atenafu EG, Chao S, et al. Vertebral compression fracture after spine stereotactic body radiotherapy: a multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J Clin Oncol. 2013;31(27):3426–31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jawad MS, Fahim DK, Gerszten PC, et al. Vertebral compression fractures after stereotactic body radiation therapy: a large, multi-institutional, multinational evaluation. J Neurosurg Spine. 2016;24(6):928–36.

    Article  PubMed  Google Scholar 

  35. Cunha MVR, Al-Omair A, Atenafu EG, et al. Vertebral compression fracture (VCF) after spine stereotactic body radiation therapy (SBRT): analysis of predictive factors. Int J Radiat Oncol Biol Phys. 2012;84(3):e343–9.

    Article  PubMed  Google Scholar 

  36. Wilden JA, Moran SL, Dekutosky MB, Bishop AT, Shin AYS. Results of vascularized rib grafts in complex spinal reconstruction. J Bone Joint Surg Am. 2006;88-A(4):832–9.

    Google Scholar 

  37. Kaltoft B, Kruse A, Jensen LT, Elberg JJ. Reconstruction of the cervical spine with two osteocutaneous fibular flap after radiotherapy and resection of osteoclastoma: a case report. J Plast Reconstr Aesthet Surg. 2012;65(9):1262–4.

    Article  PubMed  Google Scholar 

  38. Elder BD, Ishida W, Goodwin CR, et al. Bone graft options for spinal fusion following resection of spinal column tumors: systematic review and meta-analysis. Neurosurg Focus. 2017;42(1):E16.

    Article  PubMed  Google Scholar 

  39. Miller DJ, Lang FF, Walsh GL, Abi-Said D, Wildrick DM, Gokaslan ZL. Coaxial double-lumen methylmethacrylate reconstruction in the anterior cervical and upper thoracic spine after tumor resection. J Neurosurg. 2000;92(2 Suppl):181–90.

    PubMed  CAS  Google Scholar 

  40. Hayashi T, Lord EL, Suzuki A, et al. A comparison of commercially available demineralized bone matrices with and without human mesenchymal stem cells in a rodent spinal fusion model. J Neurosurg Spine. 2016;25(1):133–7.

    Article  PubMed  Google Scholar 

  41. Skovrlj B, Guzman JZ, Al Maaieh M, Cho SK, Iatridis JC, Qureshi SA. Cellular bone matrices: viable stem cell-containing bone graft substitutes. Spine J. 2014;14(11):2763–72.

    Article  PubMed  PubMed Central  Google Scholar 

  42. McAnany SJ, Ahn J, Elboghdady IM, et al. Mesenchymal stem cell allograft as a fusion adjunct in one- and two-level anterior cervical discectomy and fusion: a matched cohort analysis. Spine J. 2016;16(2):163–7.

    Article  PubMed  Google Scholar 

  43. Zhou R, Huang Z, Liu X, et al. Kinematics and load-sharing of an anterior thoracolumbar spinal reconstruction construct with PEEK rods: an in vitro biomechanical study. Clin Biomech (Bristol, Avon). 2016;40:1–7.

    Article  CAS  Google Scholar 

  44. Li Z-J, Wang Y, Xu G-J, Tian P. Is PEEK cage better than titanium cage in anterior cervical discectomy and fusion surgery? A meta-analysis. BMC Musculoskelet Disord. 2016;17(1):379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pekmezci M, Tang JA, Cheng L, et al. Comparison of expandable and fixed interbody cages in a human cadaver corpectomy model: fatigue characteristics. Clin Spine Surg. 2016;29(9):387–93.

    Article  PubMed  Google Scholar 

  46. Viswanathan A, Abd-El-Barr MM, Doppenberg E, et al. Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: a report of 95 patients. Eur Spine J. 2012;21(1):84–92.

    Article  PubMed  Google Scholar 

  47. Ernstberger T, Kogel M, Konig F, Schultz W. Expandable vertebral body replacement in patients with thoracolumbar spine tumors. Arch Orthop Trauma Surg. 2005;125(10):660–9.

    Article  CAS  PubMed  Google Scholar 

  48. Disch AC, Schaser KD, Melcher I, Luzzati A, Feraboli F, Schmoelz W. En bloc spondylectomy reconstructions in a biomechanical in-vitro study. Eur Spine J. 2008;17(5):715–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eleraky M, Papanastassiou I, Tran ND, Dakwar E, Vrionis FD. Comparison of polymethylmethacrylate versus expandable cage in anterior vertebral column reconstruction after posterior extracavitary corpectomy in lumbar and thoraco-lumbar metastatic spine tumors. Eur Spine J. 2011;20(8):1363–70.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Viljoen SV, DeVries Watson NA, Grosland NM, Torner J, Dalm B, Hitchon PW. Biomechanical analysis of anterior versus posterior instrumentation following a thoracolumbar corpectomy: laboratory investigation. J Neurosurg Spine. 2014;21(4):577–81.

    Article  PubMed  Google Scholar 

  51. Liu X, Ma J, Park P, Huang X, **e N, Ye X. Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a three-dimensional finite element study. BMC Musculoskelet Disord. 2017;18(1):63.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sundaresan N, Shah J, Foley KM, Rosen G. An anterior surgical approach to the upper thoracic vertebrae. J Neurosurg. 1984;61(4):686–90.

    Article  CAS  PubMed  Google Scholar 

  53. Sar C, Hamzaoglu A, Talu U, Domanic U. An anterior approach to the cervicothoracic junction of the spine (modified osteotomy of manubrium sterni and clavicle). J Spinal Disord. 1999;12(2):102–6.

    Article  CAS  PubMed  Google Scholar 

  54. Darling GE, McBroom R, Perrin R. Modified anterior approach to the cervicothoracic junction. Spine. 1995;20(13):1519–21.

    Article  CAS  PubMed  Google Scholar 

  55. Lehman RM, Grunwerg B, Hall T. Anterior approach to the cervicothoracic junction: an anatomic dissection. J Spinal Disord. 1997;10(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kraus DH, Huo J, Burt M. Surgical access to tumors of the cervicothoracic junction. Head Neck. 1995;17(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  57. Cohen ZR, Fourney DR, Gokaslan ZL, Walsh GL, Rhines LD. Anterior stabilization of the upper thoracic spine via an “interaortocaval subinnominate window”: case report and description of operative technique. J Spinal Disord Tech. 2004;17(6):543–8.

    Article  PubMed  Google Scholar 

  58. York JE, Walsh GL, Lang FF, et al. Combined chest wall resection with vertebrectomy and spinal reconstruction for the treatment of Pancoast tumors. J Neurosurg. 1999;91(1 Suppl):74–80.

    Article  CAS  PubMed  Google Scholar 

  59. Puvanesarajah V, Lina IA, Liauw JA, et al. Systematic approach for anterior corpectomy through a transthoracic exposure. Turk Neurosurg. 2016;26(4):646–52.

    PubMed  Google Scholar 

  60. Baaj AA, Papadimitriou K, Amin AG, Kretzer RM, Wolinsky J-P, Gokaslan ZL. Surgical anatomy of the diaphragm in the anterolateral approach to the spine: a cadaveric study. J Spinal Disord Tech. 2014;27(4):220–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin D. Elder MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elder, B.D., Ishida, W., Wolinsky, JP. (2018). Indications and Techniques for Anterior Thoracolumbar Resections and Reconstructions. In: Marco, R. (eds) Metastatic Spine Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-76252-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76252-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76251-7

  • Online ISBN: 978-3-319-76252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation