On Solving Contact Problems with Coulomb Friction: Formulations and Numerical Comparisons

  • Chapter
  • First Online:
Advanced Topics in Nonsmooth Dynamics

Abstract

In this chapter, we review several formulations of the discrete frictional contact problem that arises in space and time discretized mechanical systems with unilateral contact and three-dimensional Coulomb’s friction. Most of these formulations are well–known concepts in the optimization community, or more generally, in the mathematical programming community. To cite a few, the discrete frictional contact problem can be formulated as variational inequalities, generalized or semi–smooth equations, second–order cone complementarity problems, or optimization problems, such as quadratic programming problems over second-order cones. Thanks to these multiple formulations, various numerical methods emerge naturally for solving the problem. We review the main numerical techniques that are well-known in the literature, and we also propose new applications of methods such as the fixed point and extra-gradient methods with self-adaptive step rules for variational inequalities or the proximal point algorithm for generalized equations. All these numerical techniques are compared over a large set of test examples using performance profiles. One of the main conclusions is that there is no universal solver. Nevertheless, we are able to give some hints for choosing a solver with respect to the main characteristics of the set of tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://frictionalcontactlibrary.github.io/index.html, which aims to provide many problems to compare algorithms on a fair basis.

  2. 2.

    http://siconos.gforge.inria.fr.

  3. 3.

    More information can be found at https://frictionalcontactlibrary.github.io.

  4. 4.

    The whole collection of problems can be found at https://github.com/FrictionalContactLibrary/fclib-library.

  5. 5.

    https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home.

  6. 6.

    More information on the software is available at http://siconos.gforge.inria.fr and the software can be downloaded at https://github.com/siconos/siconos.

  7. 7.

    http://people.sc.fsu.edu/~jburkardt/c_src/csparse/csparse.html.

  8. 8.

    https://ciment-grid.ujf-grenoble.fr/.

  9. 9.

    Nevertheless, the reader can have access to the complete list of performance profiles at https://github.com/siconos/faf/blob/master/TeX/Full-test/full-test_current.pdf.

References

  1. Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems. Applications in mechanics and electronics. Lecture notes in applied and computational mechanics, vol 35. Springer, Berlin, p xxi, 525 pp

    Google Scholar 

  2. Acary V, Cadoux F (2013) Applications of an existence result for the Coulomb friction problem. In: Stavroulakis GE (ed) Recent advances in contact mechanics. Lecture notes in applied and computational mechanics, vol 56. Springer, Berlin

    Google Scholar 

  3. Acary V, Cadoux F, Lemaréchal C, Malick J (2011) A formulation of the linear discrete coulomb friction problem via convex optimization. ZAMM - J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 91(2):155–175. https://doi.org/10.1002/zamm.201000073

  4. Acary V, Brémond M, Koziara T, Pérignon F (2014) FCLIB: a collection of discrete 3D frictional contact problems. Technical Report RT-0444, INRIA. https://hal.inria.fr/hal-00945820

  5. Acary V, Brémond M, Huber O, Pérignon F (2015) An introduction to Siconos. Technical Report TR-0340, second version, INRIA. http://hal.inria.fr/inria-00162911/en/

  6. Acary V, Brémond M, Dubois F (2017) Méthodes de Newton non–lisses pour les problèmes de contact frottant dans les systèmes de multi–corps flexibles. In: CSMA 2017 - 13ème Colloque National en Calcul des Structures, Presqu’île de Giens (Var), France, p 8. https://hal.inria.fr/hal-01562706

  7. Al-Fahed A, Stavroulakis G, Panagiotopulos P (1991) Hard and soft fingered robot grippers. The linear complementarity approach. Zeitschrift für Angewandte Mathematik und Mechanik 71:257–265

    Article  MathSciNet  Google Scholar 

  8. Alart P (1993) Injectivity and surjectivity criteria for certain map**s of \({\rm I\it \!\rm R\it }^{n}\) into itself; application to contact mechanics. (Critères d’injectivité et de surjectivité pour certaines applications de \({\rm I\it \!\rm R\it }^{n}\) dans lui-même; application à la mécanique du contact.). RAIRO, Modélisation Math Anal Numér 27(2):203–222

    Google Scholar 

  9. Alart P (1995) Méthode de newton généralisée en mécanique du contact. Journal de Mathématiques Pures et Appliquées

    Google Scholar 

  10. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution method. Comput Methods Appl Mech Eng 92(3):353–375

    Article  MathSciNet  Google Scholar 

  11. Anitescu M, Potra F (1997) Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn Trans ASME 14:231–247

    Article  MathSciNet  Google Scholar 

  12. Anitescu M, Tasora A (2010) An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput Optim Appl 47(2):207–235. https://doi.org/10.1007/s10589-008-9223-4

  13. Barbosa H, Feijóo R (1985) A numerical algorithm for signorini problem with Coulomb friction. In: [26]

    Google Scholar 

  14. Barbosa H, Raupp F, Borges C (1997) Numerical experiments with algorithms for bound constrained quadratic programming in mechanics. Comput Struct 64(1–4):579–594

    Article  Google Scholar 

  15. Bonnans J, Gilbert J, Lemaréchal C, Sagastizábal C (2003) Numerical optimization: theoretical and practical aspects. Springer, Berlin

    Google Scholar 

  16. Bonnefon O, Daviet G (2011) Quartic formulation of Coulomb 3D frictional contact. Technical Report RT-0400, INRIA. https://hal.inria.fr/inria-00553859

  17. Breitkopf P, Jean M (1999) Modélisation parallèèle des matéériaux granulaires. In: Actes du 4ème Colloque National en Calcul des Structures, Giens(Var), pp 387–392

    Google Scholar 

  18. Cadoux F (2009) Analyse convexe et optimisation pour la dynamique non–regulière. PhD thesis, Université Joseph Fourier, Grenoble I

    Google Scholar 

  19. Calamai P, More J (1987) Projected gradient methods for linearly constrained problems. Math Program 39(1):93–116. https://doi.org/10.1007/BF02592073

  20. Chabrand P, Dubois F, Raous M (1998) Various numerical methods for solving unilateral contact problems with friction. Math Comput Model 28(4–8):97–108. https://doi.org/10.1016/S0895-7177(98)00111-3, http://www.sciencedirect.com/science/article/pii/S0895717798001113, Recent advances in contact mechanics

  21. Chaudhary A, Bathe K (1986) A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Comput Struct 24(6):855–873

    Article  Google Scholar 

  22. Christensen P, Pang J (1998) Frictional contact algorithms based on semismooth newton methods. In: Qi MFL (ed) Reformulation - nonsmooth, piecewise smooth, semismooth and smoothing methods. Kluwer Academic Publishers, Dordrecht, pp 81–116

    Chapter  Google Scholar 

  23. Christensen P, Klarbring A, Pang J, Stromberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Meth Eng 42:145–172

    Article  MathSciNet  Google Scholar 

  24. Curnier A, Alart P (1988) A generalized Newton method for contact problems with friction. Journal de Mécanique Théorique et Appliquée supplément no 1 to 7:67–82

    Google Scholar 

  25. Daviet G, Bertails-Descoubes F, Boissieux L (2011) A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. ACM Trans Graph 30(6):139:1–139:12. https://doi.org/10.1145/2070781.2024173, https://hal.inria.fr/hal-00647497

  26. De Saxcé G (1992) Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives. Comptes Rendus de l’Académie des Sciences t 314,série II:125–129

    Google Scholar 

  27. De Saxcé G, Feng ZQ (1991) New inequality and functional for contact with friction: the implicit standard material approach. Mech Struct Mach 19(3):301–325

    Article  MathSciNet  Google Scholar 

  28. De Saxcé G, Feng ZQ (1998) The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28(4):225–245

    Article  MathSciNet  Google Scholar 

  29. Del Piero G, Maceri F (eds) (1983) Unilateral problems in structural analysis. CISM courses and lectures, vol 288. Springer, Ravello

    Google Scholar 

  30. Del Piero G, Maceri F (eds) (1985) Unilateral problems in structural analysis – II. CISM courses and lectures, vol 304. Springer, Prescudin

    Google Scholar 

  31. Dolan E, Moré J (2002) Benchmarking optimization software with performance profiles. Math Program 91(2):201–213

    Article  MathSciNet  Google Scholar 

  32. Dostál Z (1997) Box constrained quadratic programming with proportioning and projections. SIAM J Optim 7(3):871–887. https://doi.org/10.1137/S1052623494266250

  33. Dostál Z (2016) Scalable algorithms for contact problems. Springer, New York. https://doi.org/10.1007/978-1-4939-6834-3_8

  34. Dostál Z, Kozubek T (2012) An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications. Math Program 135(1-2, Ser. A):195–220. https://doi.org/10.1007/s10107-011-0454-2

  35. Dostál Z, Kučera R (2010) An optimal algorithm for minimization of quadratic functions with bounded spectrum subject to separable convex inequality and linear equality constraints. SIAM J Optim 20(6):2913–2938. https://doi.org/10.1137/090751414

  36. Dostál Z, Schöberl J (2005) Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination. Comput Optim Appl 30(1):23–43. https://doi.org/10.1007/s10589-005-4557-7

  37. Dostál Z, Haslinger J, Kučera R (2002) Implementation of the fixed point method in contact problems with Coulomb friction based on a dual splitting type technique. J Comput Appl Math 140(1–2):245–256. https://doi.org/10.1016/S0377-0427(01)00405-8

  38. Dostál Z, Kozubek T, Horyl P, Brzobohatý T, Markopoulos A (2010) A scalable tfeti algorithm for two-dimensional multibody contact problems with friction. J Computat Appl Math 235(2):403 – 418. https://doi.org/10.1016/j.cam.2010.05.042, http://www.sciencedirect.com/science/article/pii/S0377042710003328, special Issue on Advanced Computational Algorithms

  39. Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity problems. Springer series in operations research, vol I, II. Springer, Berlin

    Google Scholar 

  40. Fletcher R (1987) Practical methods of optimization. Wiley, Chichester

    MATH  Google Scholar 

  41. Fong DCL, Saunders M (2011) Lsmr: an iterative algorithm for sparse least-squares problems. SIAM J Sci Comput 33(5):2950–2971. https://doi.org/10.1137/10079687X

  42. Fortin M, Glowinski R (1983) Augmented Lagrangian methods. Studies in mathematics and its applications, vol 15. North-Holland Publishing Co., Amsterdam, applications to the numerical solution of boundary value problems, Translated from the French by Hunt B, Spicer DC

    Google Scholar 

  43. Fukushima M, Luo Z, Tseng P (2001) Smoothing functions for second-order-cone complementarity problems. SIAM J Optim 12(2):436–460. https://doi.org/10.1137/S1052623400380365

  44. Glowinski R, JL L, Trémoliéres R, (1976) Approximations des Inéquations Variationnelles. Dunod, Paris

    Google Scholar 

  45. Hager WW, Zhang H (2008) Self-adaptive inexact proximal point methods. Comput Optim Appl 39(2):161–181. https://doi.org/10.1007/s10589-007-9067-3

  46. Han D, Lo HK (2002) Two new self-adaptive projection methods for variational inequality problems. Comput Math Appl 43(12):1529–1537. https://doi.org/10.1016/S0898-1221(02)00116-5, http://www.sciencedirect.com/science/article/pii/S0898122102001165

  47. Harker P, Pang JS (1990) Finite-dimensional variational inequality and complementarity problems: a survey of theory, algorithms and applications. Math Program 48:160–220

    MathSciNet  MATH  Google Scholar 

  48. Haslinger J (1983) Approximation of the signorini problem with friction, obeying the coulomb law. Math Methods Appl Sci 5:422–437

    Article  MathSciNet  Google Scholar 

  49. Haslinger J (1984) Least square method for solving contact problems with friction obeying coulomb’s law. Appl Math 29(3):212–224. http://dml.cz/dmlcz/104086

  50. Haslinger J, Panagiotopoulos PD (1984) The reciprocal variational approach to the signorini problem with friction. approximation results. Proc R Soc Edinb Section A Math 98:365–383. http://journals.cambridge.org/article_S0308210500013536

  51. Haslinger J, Hlaváček I, Nečas J (1996) Numerical methods for unilateral problems in solid mechanics. In: Ciarlet P, Lions J (eds) Handbook of numerical analysis, vol IV, Part 2. North-Holland, Amsterdam, pp 313–485

    Google Scholar 

  52. Haslinger J, Dostál Z, Kučera R (2002) On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput Methods Appl Mech Engrg 191(21-22):2261–2281. https://doi.org/10.1016/S0045-7825(01)00378-4

  53. Haslinger J, Kučera R, D Z (2004) An algorithm for the numerical realization of 3D contact problems with Coulomb friction. In: Proceedings of the 10th international congress on computational and applied mathematics (ICCAM-2002), vol 164/165, pp 387–408. https://doi.org/10.1016/j.cam.2003.06.002

  54. Haslinger J, Kučera R, Vlach O, Baniotopoulos C (2012) Approximation and numerical realization of 3d quasistatic contact problems with coulomb friction. Math Comput Simul 82(10):1936 – 1951. https://doi.org/10.1016/j.matcom.2011.01.004, http://www.sciencedirect.com/science/article/pii/S0378475411000310, the fourth IMACS conference: Mathematical modelling and computational methods in applied sciences and engineering” Devoted to Owe Axelsson in ocassion of his 75th birthday

  55. Hayashi S, Yamashita N, Fukushima M (2005) A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J Optim 15(2):593–615. https://doi.org/10.1137/S1052623403421516

  56. He B, Liao L (2002) Improvements of some projection methods for monotone nonlinear variational inequalities. J Optim Theory Appl 112(1):111–128. https://doi.org/10.1023/A:1013096613105

  57. Hestenes M (1969) Multiplier and gradient methods. J Optim Theory Appl 4:303–320

    Article  MathSciNet  Google Scholar 

  58. Heyn T (2013) On the modeling, simulation, and visualization of many–body dynamics problems with friction and contact. PhD thesis, University of Wisconsin–Madison

    Google Scholar 

  59. Heyn T, Anitescu M, Tasora A, Negrut D (2013) Using Krylov subspace and spectral methods for solving complementarity problems in many-body contact dynamics simulation. Int J Numer Methods Engrg 95(7):541–561. https://doi.org/10.1002/nme.4513

  60. Hüeber S, Stadler G, Wohlmuth BI (2008) A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J Sci Comput 30(2):572–596. https://doi.org/10.1137/060671061

  61. Jean M, Moreau J (1987) Dynamics in the presence of unilateral contacts and dry friction: a numerical approach. In: Del Pietro G, Maceri F (eds) Unilateral problems in structural analysis. II, CISM 304. S**er, pp 151–196

    Google Scholar 

  62. Joli P, Feng ZQ (2008) Uzawa and newton algorithms to solve frictional contact problems within the bi-potential framework. Int J Numer Methods Eng 73(3):317–330. https://doi.org/10.1002/nme.2073

  63. Jourdan F, Alart P, Jean M (1998) A Gauss Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155(1):31–47

    Article  MathSciNet  Google Scholar 

  64. Katona MG (1983) A simple contact–friction interface element with applications to buried culverts. Int J Numer Anal Methods Geomech 7(3):371–384. https://doi.org/10.1002/nag.1610070308

  65. Khobotov E (1987) Modification of the extra-gradient method for solving variational inequalities and certain optimization problems. USSR Comput Math Math Phys 27(5):120–127. https://doi.org/10.1016/0041-5553(87)90058-9, http://www.sciencedirect.com/science/article/pii/0041555387900589

  66. Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM studies in applied mathematics, vol 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. https://doi.org/10.1137/1.9781611970845

  67. Klarbring A (1986) A mathematical programming approach to three-dimensional contact problem with friction. Compt Methods Appl Math Engrg 58:175–200

    Article  MathSciNet  Google Scholar 

  68. Klarbring A, Pang JS (1998) Existence of solutions to discrete semicoercive frictional contact problems. SIAM J Optim 8(2):414–442

    Article  MathSciNet  Google Scholar 

  69. Kleinert J, Simeon B, Obermayr M (2014) An inexact interior point method for the large-scale simulation of granular material. Comput Methods Appl Mech Eng 278(0):567–598. https://doi.org/10.1016/j.cma.2014.06.009, http://www.sciencedirect.com/science/article/pii/S0045782514001959

  70. Korpelevich G (1976) The extragradient method for finding saddle points and other problems. Matecon 12(747–756)

    Google Scholar 

  71. Koziara T, Bićanić N (2008) Semismooth newton method for frictional contact between pseudo-rigid bodies. Comput Methods Appl Mech Eng 197(33–40):2763–2777. https://doi.org/10.1016/j.cma.2008.01.006, http://www.sciencedirect.com/science/article/pii/S0045782508000194

  72. Koziara T, Bićanić N (2011) A distributed memory parallel multibody contact dynamics code. Int J Numer Methods Eng 87(1–5):437–456. https://doi.org/10.1002/nme.3158

  73. Krabbenhoft K, Lyamin A, Huang J, da Silva MV (2012) Granular contact dynamics using mathematical programming methods. Comput Geotech 43:165–176. https://doi.org/10.1016/j.compgeo.2012.02.006, http://www.sciencedirect.com/science/article/pii/S0266352X12000262

  74. Kučera R (2007) Minimizing quadratic functions with separable quadratic constraints. Optim Methods Softw 22(3):453–467. https://doi.org/10.1080/10556780600609246

  75. Kučera R (2008) Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints. SIAM J Optim 19(2):846–862. https://doi.org/10.1137/060670456

  76. Laursen T (2003) Computational contact and impact mechanics – fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin, 1st ed 2002. Corr 2nd printing

    Google Scholar 

  77. Leung A, Guoqing C, Wanji C (1998) Smoothing Newton method for solving two- and thre-dimensional frictional contact problems. Int J Numer Meth Eng 41:1001–1027

    Article  Google Scholar 

  78. Mijar A, Arora J (2000) Review of formulations for elastostatic frictional contact problems. Struct Multidiscip Optim 20(3):167–189. https://doi.org/10.1007/s001580050147

  79. Mijar A, Arora J (2000) Study of variational inequality and equality formulations for elastostatic frictional contact problems. Arch Comput Methods Eng 7(4):387–449. https://doi.org/10.1007/BF02736213

  80. Mijar A, Arora J (2004) An augmented Lagrangian optimization method for contact analysis problems, 1: formulation and algorithm. Struct Multidiscip Optim 28(2-3):99–112. https://doi.org/10.1007/s00158-004-0423-y

  81. Mijar A, Arora J (2004) An augmented Lagrangian optimization method for contact analysis problems, 2: numerical evaluation. Struct Multidiscip Optim 28(2-3):113–126. https://doi.org/10.1007/s00158-004-0424-x

  82. Mitsopoulou E, Doudoumis I (1987) A contribution to the analysis of unilateral contact problems with friction. Solid Mech Arch 12(3):165–186

    MATH  Google Scholar 

  83. Mitsopoulou E, Doudoumis I (1988) On the solution of the unilateral contact frictional problem for general static loading conditions. Comput Struct 30(5):1111–1126

    Article  Google Scholar 

  84. Miyamura T, Kanno Y, Ohsaki M (2010) Combined interior-point method and semismooth newton method for frictionless contact problems. Int J Numer Methods Eng 81(6):701–727. https://doi.org/10.1002/nme.2707

  85. Morales JL, Nocedal J, Smelyanskiy M (2008) An algorithm for the fast solution of symmetric linear complementarity problems. Numerische Mathematik 111(2):251–266. https://doi.org/10.1007/s00211-008-0183-5

  86. Moré J, Toraldo G (1991) On the solution of large quadratic convex programming problems with bound constraints. SIAM J Optim 1(1):93–113

    Article  MathSciNet  Google Scholar 

  87. Moré JJ, Toraldo G (1989) Algorithms for bound constrained quadratic programming problems. Numerische Mathematik 55(4):377–400. https://doi.org/10.1007/BF01396045

  88. Moreau J (1965) Proximité et dualité dans un espace hilbertien. Bulletin de la société mathématique de France 93:273–299

    Google Scholar 

  89. Moreau J (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Moreau J, PD P (eds) Nonsmooth mechanics and applications, no. 302 in CISM, Courses and lectures, CISM 302, S**er, Wien- New York, pp 1–82, formulation mathematiques tire du livre Contacts mechanics

    Google Scholar 

  90. Mylapilli H, Jain A (2017) Complementarity techniques for minimal coordinates contact dynamics. ASME J Comput Nonlinear Dyn 12(2)

    Google Scholar 

  91. Nečas J, Jarušek J, Haslinger J (1980) On the solution of the variational inequality to the Signorini problem with small friction. Bollettino UMI 5(17-B):796–811

    Google Scholar 

  92. Nocedal J, Wright S (1999) Numerical optimization. Springer, Berlin

    Google Scholar 

  93. Panagiotopoulos P (1975) A nonlinear programming approach to the unilateral contact-, and friction-boundary value problem in the theory of elasticity. Ingenieur-Archiv 44(6):421–432. https://doi.org/10.1007/BF00534623

  94. Pang J, Trinkle J (1996) Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math Program 73:199–226

    Article  MathSciNet  Google Scholar 

  95. Parikh N, Boyd S et al (2014) Proximal algorithms. Found Trends\({\textregistered }\) Optim 1(3):127–239

    Google Scholar 

  96. Park J, Kwak B (1994) Three dimensional frictional contact analysis using the homotopy method. J Appl Mech Trans ASME 61:703–709

    Article  Google Scholar 

  97. Qi L, Sun J (1993) A nonsmooth version of Newton’s method. Math Program 58:353–367

    Article  MathSciNet  Google Scholar 

  98. Qi L, Sun D, Ulbrich M (eds) (2018) Semismooth and smoothing Newton methods. Springer, Berlin

    Google Scholar 

  99. Raous M, Chabrand P, Lebon F (1988) Numerical methods for frictional contact problems and applications. J Méc Théor Appl 7(1):111–18

    MathSciNet  MATH  Google Scholar 

  100. Renouf M, Dubois F, Alart P (2004) A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J Comput Appl Math 168:375–382

    Article  MathSciNet  Google Scholar 

  101. Rockafellar R (1974) Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J Control 12:268–285

    Article  MathSciNet  Google Scholar 

  102. Rockafellar R (1993) Lagrange multipliers and optimality. SIAM Rev 35(2):183–238

    Article  MathSciNet  Google Scholar 

  103. Rockafellar R, Wets R (1997) Variational analysis, vol 317. Springer, New York

    MATH  Google Scholar 

  104. Rockafellar RT (1976) Monotone operators and the proximal point algorithm. SIAM J Control Optim 14(5):877–898

    Article  MathSciNet  Google Scholar 

  105. Saxcé GD, Feng ZQ (1998) The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28(4–8):225–245. https://doi.org/10.1016/S0895-7177(98)00119-8, http://www.sciencedirect.com/science/article/pii/S0895717798001198, Recent advances in contact mechanics

  106. Sibony M (1970) Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone. Calcolo 7:65–183

    Article  MathSciNet  Google Scholar 

  107. Simo J, Laursen T (1992) An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 42(1):97–116

    Article  MathSciNet  Google Scholar 

  108. Solodov M, Tseng P (1996) Modified projection-type methods for monotone variational inequalities. SIAM J Control Optim 34(5):1814–1830. http://citeseer.ist.psu.edu/article/solodov95modified.html

  109. Stadler G (2004) Semismooth Newton and augmented Lagrangian methods for a simplified friction problem. SIAM J Optim 15(1):39–62. https://doi.org/10.1137/S1052623403420833

  110. Stewart D, Trinkle J (1996) An implicit time-step** scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int J Numer Methods Eng 39(15), reference tiree du site WILEY

    Google Scholar 

  111. Sun D, Sun J (2005) Strong semismoothness of the fischer-burmeister sdc and soc complementarity functions. Math Program. 103(3):575–581. https://doi.org/10.1007/s10107-005-0577-4

  112. Tasora A, Anitescu M (2009) A fast NCP solver for large rigid-body problems with contacts, friction, and joints. In: Multibody dynamics, computational methods and applications science, vol 12. Springer, Berlin, pp 45–55

    Google Scholar 

  113. Tasora A, Anitescu M (2011) A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput Methods Appl Mech Engrg 200(5-8):439–453. https://doi.org/10.1016/j.cma.2010.06.030

  114. Tasora A, Anitescu M (2013) A complementarity-based rolling friction model for rigid contacts. Meccanica 48(7):1643–1659. https://doi.org/10.1007/s11012-013-9694-y

  115. Temizer I, Abdalla M, Gürdal Z (2014) An interior point method for isogeometric contact. Comput Methods Appl Mech Eng 276(0):589–611. https://doi.org/10.1016/j.cma.2014.03.018, http://www.sciencedirect.com/science/article/pii/S0045782514001042

  116. Tzaferopoulos M (1993) On an efficient new numerical method for the frictional contact problem of structures with convex energy density. Comput Struct 48(1):87–106

    Article  MathSciNet  Google Scholar 

  117. Wang X, He B, Liao LZ (2010) Steplengths in the extragradient type methods. J Comput Appl Math 233(11):2925–2939. https://doi.org/10.1016/j.cam.2009.11.037, http://www.sciencedirect.com/science/article/pii/S0377042709007845

  118. Wohlmuth BI, Krause RH (2003) Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems. SIAM J Sci Comput 25(1):324–347. https://doi.org/10.1137/S1064827502405318

  119. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin. Originally published by Wiley, 2002

    Google Scholar 

  120. Xuewen L, Soh AK, Wanji C (2000) A new nonsmooth model for three-dimensional frictional contact problems. Comput Mech 26:528–535

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Pierre Alart, Paul Armand, Florent Cadoux, Frédéric Dubois, Claude Lémaréchal, Jérôme Malick and Mathieu Renouf for all of the stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Acary .

Editor information

Editors and Affiliations

Appendices

Appendix 1. Basics in Convex Analysis

Definition 1

([103]) Let \(X\subseteq \mathrm {I\!R}^n\). A multivalued (or point-to-set) map** \(T:X\rightrightarrows X\) is said to be (strictly) monotone if there exists \(c (>) \geqslant 0\) such that, for all \(\hat{x}, \widetilde{x} \in X\),

$$\begin{aligned} {(\hat{v} - \widetilde{v})}^\top (\hat{x} - \widetilde{x})\geqslant c \Vert \hat{x} - \widetilde{x}\Vert \qquad \text {with}\; \hat{v}\in T(\hat{x}), \widetilde{v}\in T(\widetilde{x}). \end{aligned}$$
(137)

Moreover, T is said to be maximal when it is not possible to add a pair (xv) to the graph of T without destroying the monotonicity.

The Euclidean projector \(P_X\) onto a closed convex set X: for a vector \(x\in \mathrm {I\!R}^n\), the projected vector \(z = P_X(x)\) is the unique solution to the convex quadratic program

$$\begin{aligned} {\left\{ \begin{array}{ll} \min \, {\displaystyle \frac{\displaystyle 1}{\displaystyle 2}} (y-x)^\top (y-x), \\ \begin{array}{ll} \text {s.t.} &{} y \in X . \end{array} \end{array}\right. } \end{aligned}$$
(138)

The following equivalences are classical:

$$\begin{aligned} y = P_K(x)&\Longleftrightarrow \begin{array}{ll} \min &{}\frac{1}{2} (y-x)^\top (y-x ) \\ \text{ s.t. } &{} y \in K \end{array} \end{aligned}$$
(139)
$$\begin{aligned}&\Longleftrightarrow - (y-x) \in N_K(y) \end{aligned}$$
(140)
$$\begin{aligned}&\Longleftrightarrow (x-y)^\top (y-z) \geqslant 0, \forall z \in K \end{aligned}$$
(141)
$$\begin{aligned} -F(x) \in N_K(x)&\Longleftrightarrow -\rho F(x)^\top (y-x) \geqslant 0, \forall y \in K\end{aligned}$$
(142)
$$\begin{aligned}&\Longleftrightarrow (x-(x - \rho F(x))^\top (y-x) \geqslant 0, \forall y \in K \end{aligned}$$
(143)
$$\begin{aligned}&\Longleftrightarrow x = P_K(x- \rho F(x)) \text { thanks to (141).} \end{aligned}$$
(144)

Sub-differential of the Euclidean Norm

The sub-differential of the Euclidean norm in \(\mathrm {I\!R}^n\) is given by

$$\begin{aligned} \partial \Vert z\Vert = \left\{ \begin{array}{lcl} {\displaystyle \frac{\displaystyle z}{\displaystyle \Vert z\Vert }}, &{} &{}z \ne 0\\ \{x, \Vert x\Vert \leqslant 1 \},&{} &{}z = 0. \end{array} \right. \end{aligned}$$
(145)

Euclidean Projection on the Unit Ball

Let \(B=\{x \in \mathrm {I\!R}^n, \Vert x\Vert \leqslant 1\}\). The Euclidean projection on the unit ball is given by

$$\begin{aligned} P_{B}(z) =\left\{ \begin{array}{lcl} z &{}\text {if}&{} z \in B \\ {\displaystyle \frac{\displaystyle z}{\displaystyle \Vert z\Vert }}&{} \text {if}&{}z \notin B. \end{array}\right. \end{aligned}$$
(146)

Its subdifferential can be computed as

$$\begin{aligned} \partial P_{B}(z) =\left\{ \begin{array}{lcl} I &{}\text {if }&{} z \in B \setminus \partial B \\ I + (s-1)z z^\top , s\in [0,1] &{}\text {if }&{} z \in \partial B \\ {\displaystyle \frac{\displaystyle I}{\displaystyle \Vert z\Vert }} - {\displaystyle \frac{\displaystyle z z^\top }{\displaystyle \Vert z\Vert ^3}} &{}\text {if }&{} z \notin B. \end{array}\right. \end{aligned}$$
(147)

Euclidean Projection on the Second-Order Cone of \(\mathrm {I\!R}^3\)

Let \(K=\{x = [x_{\text {N}}x_{\text {T}}]^T \in \mathrm {I\!R}^3, x_{\text {N}}\in \mathrm {I\!R}, \Vert x_{{\text {T}}}\Vert \leqslant \mu x_{{\text {N}}}\}\) be the second-order cone in \(\mathrm {I\!R}^3\). The Euclidean projection on K is

$$\begin{aligned} P_{K}(z) =\left\{ \begin{array}{lcl} z &{}\text {if}&{} z \in K \\ 0 &{}\text {if}&{} -z \in K^* \\ {\displaystyle \frac{\displaystyle 1}{\displaystyle 1+\mu ^2}}(z_{\text {N}}+ \mu \Vert z_{\text {T}}\Vert ) \left[ \begin{array}{c} 1 \\ \mu {\displaystyle \frac{\displaystyle z_{\text {T}}}{\displaystyle \Vert z_{\text {T}}\Vert }} \end{array}\right]&\text {if}&z \notin K \text { and } -z \notin K^*. \end{array}\right. \end{aligned}$$
(148)

Direct Computation of an Element of the Subdifferential

The computation of the subdifferential of \(P_{K}\) is given as follows:

  • if \(z\in K\setminus \partial K\), \(\partial _z P_K(z) =I\),

  • if \(-z \in K^*\setminus \partial K^*\), \(\partial _z P_K(z) =0\),

  • if \(z \notin K\) and \(-z \notin K^*\) and, \(\partial _z P_K(z) =0\), we get

    $$\begin{aligned} \partial _{z_{\text {N}}} P_{K}(z) = {\displaystyle \frac{\displaystyle 1}{\displaystyle 1+\mu ^2}} \left[ \begin{array}{c} 1 \\ \mu z_{\text {T}}\end{array}\right] \end{aligned}$$
    (149)

    and

    $$\begin{aligned} \partial _{z_{\text {T}}} [P_{K}(z)]_{\text {N}}= {\displaystyle \frac{\displaystyle \mu }{\displaystyle 1+\mu ^2}} {\displaystyle \frac{\displaystyle z_{\text {T}}}{\displaystyle \Vert z_{\text {T}}\Vert }} \end{aligned}$$
    (150)
    $$\begin{aligned} \partial _{z_{\text {T}}} [P_{K}(z)]_{\text {T}}= {\displaystyle \frac{\displaystyle \mu }{\displaystyle (1+\mu ^2)}} \left[ \mu {\displaystyle \frac{\displaystyle z_{\text {T}}}{\displaystyle \Vert z_{\text {T}}\Vert }} {\displaystyle \frac{\displaystyle z^\top _{\text {T}}}{\displaystyle \Vert z_{\text {T}}\Vert }}+ (z_{\text {N}}+ \mu \Vert z_{\text {T}}\Vert ) \left( {\displaystyle \frac{\displaystyle I_2}{\displaystyle \Vert z_{\text {T}}\Vert }} - {\displaystyle \frac{\displaystyle z_{\text {T}}z_{\text {T}}^\top }{\displaystyle \Vert z_{\text {T}}\Vert ^3}} \right) \right] , \end{aligned}$$
    (151)

    that is,

    $$\begin{aligned} \partial _{z_{\text {T}}} [P_{K}(z)]_{\text {T}}= {\displaystyle \frac{\displaystyle \mu }{\displaystyle (1+\mu ^2)\Vert z_{\text {T}}\Vert }} \left[ (z_{\text {N}}+ \mu \Vert z_{\text {T}}\Vert ) \,I_2 + z_{\text {N}}{\displaystyle \frac{\displaystyle z_{\text {T}}z_{\text {T}}^\top }{\displaystyle \Vert z_{\text {T}}\Vert ^2}} \right] . \end{aligned}$$
    (152)

Computation of the Subdifferential Using the Spectral Decomposition

In [55], the computation of the Clarke subdifferential of the projection operator is also done by inspecting the different cases using the spectral decomposition

$$\begin{aligned} \partial P_K(x) = \left\{ \begin{array}{ll} I &{} \quad (\lambda _1>0, \lambda _2>0 ) \\ {\displaystyle \frac{\displaystyle \lambda _2}{\displaystyle \lambda _1+\lambda _2}} I +Z &{} \quad (\lambda _1< 0, \lambda _2>0 ) \\ 0 &{} \quad (\lambda _1< 0, \lambda _2<0 ) \\ {{\mathrm{co}}}\{I, I+Z\} &{} \quad (\lambda _1=0, \lambda _2 >0 ) \\ {{\mathrm{co}}}\{0, Z\} &{} \quad (\lambda _1<0, \lambda _2 =0 ) \\ {{\mathrm{co}}}\{0 \cup I \cup S\} &{} \quad (\lambda _1=0, \lambda _2 =0 ), \end{array} \right. \end{aligned}$$
(153)

where

$$\begin{aligned} \begin{array}{l} Z = \frac{1}{2} \begin{bmatrix} - y_{\text {N}}&{} y_{\text {T}}^\top \\ y_{\text {T}}&{} - y_{\text {N}}y_{\text {T}}y_{\text {T}}^\top \end{bmatrix},\\ S = \left\{ \frac{1}{2} (1+\beta ) I + \frac{1}{2} \begin{bmatrix} -\beta &{} w^\top \\ w &{} -\beta w w^\top \end{bmatrix}\mid -1 \leqslant \beta \leqslant 1, \Vert w\Vert =1\right\} , \end{array} \end{aligned}$$
(154)

with \(y = x / \Vert x_{\text {T}}\Vert \). A simple verification shows that the previous computation is an element of the subdifferential.

Appendix 2. Computation of Generalized Jacobians for Nonsmooth Newton Methods

Computation of Components of a Subgradient of \(F_{{\text {vi}}}^\mathsf{{nat}}\)

Let us introduce the following notation for an element of the subdifferential:

$$\begin{aligned} \varPhi (u, r) = \left[ \begin{array}{cc} \rho I &{} - \rho W \\ \varPhi _{r u}(u,r) &{} \varPhi _{r r}(u,r) \end{array}\right] \in \partial F_{{\text {vi}}}^\mathsf{{nat}}(u,r), \end{aligned}$$
(155)

where \( \varPhi _{x y}(u,r) \in \partial _{x}[F_{{\text {vi}}}^\mathsf{{nat}}]_{y}(u,r)\). Since \(\varPhi _{u u}(u,r) = I \), a reduction of the system is performed in practice and Algorithm 4 is applied or \(z =r\) with

$$\begin{aligned} {\left\{ \begin{array}{ll} G(z) = [F_{{\text {vi}}}^\mathsf{{nat}}]_{r}(Wr+q,r) \\ \varPhi (z) = \varPhi _{rr}(r,Wr+q) + \varPhi _{ru}(r,Wr+q) W. \end{array}\right. } \end{aligned}$$
(156)

Let us introduce the following notation for an element of the sub–differential with an obvious simplification:

$$\begin{aligned} \varPhi (v, r) = \left[ \begin{array}{ccc} \rho M &{} - \rho H \\ -\rho H^\top &{} \rho I &{} 0 \\ 0 &{} \varPhi _{r u}(v,u,r) &{} \varPhi _{r r}(v,u,r) \end{array}\right] \in \partial F_{{\text {vi}}}^\mathsf{{nat}}(u,r), \end{aligned}$$
(157)

where \( \varPhi _{x y}(v,u,r) \in \partial _{x}[F_{{\text {vi-1}}}^\mathsf{{nat}}]_{y}(v,u,r)\). A possible computation of \(\varPhi _{r u}(v,u,r)\) and \(\varPhi _{r r}(v,u,r) \) is directly given by (159) and (158). In this case, the variable u can also be substituted.

For one contact, a possible computation of the remaining parts in \(\varPhi (u, r)\) is given by

$$\begin{aligned} \varPhi _{r u}(u,r) = \left\{ \begin{array}{lcl} 0 &{} \text{ if } &{} r- \rho (u+g(u)) \in K \\ \\ I - \partial _{r}[P_K(r-\rho (u+g(u)))] &{} \text{ if } &{}r- \rho (u+g(u)) \notin K \end{array}\right. \end{aligned}$$
(158)
$$\begin{aligned} \varPhi _{r u}(u,r) = \left\{ \begin{array}{lcl} \rho \left( I + \left[ \begin{array}{ccc} 0 &{} 0 &{} 0 \\ {\displaystyle \frac{\displaystyle u_{\text {T}}}{\displaystyle \Vert u_{\text {T}}\Vert }} &{} 0 &{} 0 \\ \end{array}\right] \right) &{} \text{ if } &{} {\left\{ \begin{array}{ll} r- \rho (u+g(u)) \in K \\ u_{\text {T}}\ne 0 \end{array}\right. } \\ \\ \rho \left( I + \left[ \begin{array}{ccc} 0 &{} 0 &{} 0 \\ s &{} 0 &{} 0 \\ \end{array}\right] \right) , s \in \mathrm {I\!R}^2 , \Vert s\Vert =1 &{} \text{ if } &{} {\left\{ \begin{array}{ll} r- \rho (u+g(u)) \in K \\ u_{\text {T}}= 0 \end{array}\right. } \\ \\ I +\rho \left( I + \left[ \begin{array}{ccc} 0 &{} 0 &{} 0 \\ {\displaystyle \frac{\displaystyle u_{\text {T}}}{\displaystyle \Vert u_{\text {T}}\Vert }} &{} 0 &{} 0 \\ \end{array}\right] \right) \partial _{u}[P_K(r-\rho (u+g(u)))]&\text{ if }&r- \rho (u+g(u)) \notin K. \end{array}\right. \end{aligned}$$
(159)

The computation of an element of \(\partial P_K\) is given in Appendix 11.

Alart–Curnier Function and Its Variants

For one contact, a possible computation of the remaining parts in \(\varPhi (u, r)\) is given by

$$\begin{aligned} \varPhi _{r_{\text {N}}u_{\text {N}}}(u,r) = \left\{ \begin{array}{ll} \rho _{{\text {N}}} &{} \text { if } r_{{\text {N}}} - \rho _{{\text {N}}} u_{{\text {N}}} > 0 \\ 0 &{} \text { otherwise } \end{array}\right. \end{aligned}$$
(160)
$$\begin{aligned} \varPhi _{r_{\text {N}}r_{\text {N}}}(u,r) = \left\{ \begin{array}{ll} 0 &{} \text { if } r_{{\text {N}}} - \rho _{{\text {N}}} u_{{\text {N}}} > 0 \\ 1 &{} \text { otherwise } \end{array}\right. \end{aligned}$$
(161)
$$\begin{aligned} \varPhi _{r_{\text {T}}u_{\text {N}}}(u,r) = \left\{ \begin{array}{ll} 0 &{} \text { if } \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert \leqslant \mu \max (0 ,r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}}) \\ 0 &{} \text { if } {\left\{ \begin{array}{ll} \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert> \mu \max (0 ,r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}}) \\ r_{{\text {N}}} - \rho _{{\text {N}}} u_n\leqslant 0 \end{array}\right. } \\ \mu \rho _{{\text {N}}} {\displaystyle \frac{\displaystyle r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}} }{\displaystyle \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert }} &{} \text { if } {\left\{ \begin{array}{ll} \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert> \mu \max (0 ,r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}}) \\ r_{{\text {N}}} - \rho _{{\text {N}}} u_n > 0 \end{array}\right. } \\ \end{array}\right. \end{aligned}$$
(162)
$$\begin{aligned} \varPhi _{r_{\text {T}}u_{\text {T}}}(u,r) = \left\{ \begin{array}{ll} \rho _{{\text {T}}} &{} \text { if } \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert \leqslant \mu \max (0 ,r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}}) \\ \mu \rho _{{\text {T}}}(r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}})_+ \varGamma (r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}) &{} \text { if } {\left\{ \begin{array}{ll} \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert> \mu \max (0 ,r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}}) \\ r_{{\text {N}}} - \rho _{{\text {N}}} u_n > 0 \end{array}\right. } \\ \end{array}\right. \end{aligned}$$
(163)
$$\begin{aligned} \varPhi _{r_{\text {T}}r_{\text {N}}}(u,r) = \left\{ \begin{array}{ll} 0 &{} \text { if } \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert \leqslant \mu \max (0 ,r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}}) \\ 0 &{} \text { if } {\left\{ \begin{array}{ll} \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert> \mu \max (0 ,r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}}) \\ r_{{\text {N}}} - \rho _{{\text {N}}} u_n\leqslant 0 \end{array}\right. } \\ -\mu {\displaystyle \frac{\displaystyle r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}} }{\displaystyle \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert }} &{} \text { if } {\left\{ \begin{array}{ll} \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert> \mu \max (0 ,r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}}) \\ r_{{\text {N}}} - \rho _{{\text {N}}} u_n > 0 \end{array}\right. } \\ \end{array}\right. \end{aligned}$$
(164)
$$\begin{aligned} \varPhi _{r_{\text {T}}r_{\text {T}}}(u,r) = \left\{ \begin{array}{ll} 0 &{} \text { if } \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert \leqslant \mu \max (0 ,r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}}) \\ I_2-\mu (r_{{\text {N}}} - \rho _{{\text {N}}}u_{\text {N}})_+ \varGamma (r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}) &{} \text { if } {\left\{ \begin{array}{ll} \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert> \mu \max (0 ,r_{{\text {N}}} - \rho _{{\text {N}}} u_{\text {N}}) \\ r_{{\text {N}}} - \rho _{{\text {N}}} u_n > 0, \end{array}\right. } \\ \end{array}\right. \end{aligned}$$
(165)

with the function \(\varGamma (\cdot )\) defined by

$$\begin{aligned} \varGamma (x) = {\displaystyle \frac{\displaystyle I_{2\times 2}}{\displaystyle \Vert x\Vert }} - {\displaystyle \frac{\displaystyle x\,x^\top }{\displaystyle \Vert x\Vert ^3}}. \end{aligned}$$
(166)

If the variant (60) is chosen, the computation of \(\varPhi _{r_{\text {T}}\bullet }\) simplifies to

$$\begin{aligned} \varPhi _{r_{\text {T}}u_{\text {N}}}(u,r) = 0 \end{aligned}$$
(167)
$$\begin{aligned} \varPhi _{r_{\text {T}}u_{\text {T}}}(u,r) = \left\{ \begin{array}{ll} \rho _{{\text {T}}} &{} \text { if } \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert \leqslant \mu r_{\text {N}}\\ -\mu \rho _{\text {T}}r_{n,+} \varGamma (r_{\text {T}}-\rho _{\text {T}}u_{\text {T}}) &{} \text { if } \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert > \mu r_{\text {N}}\\ \end{array}\right. \end{aligned}$$
(168)
$$\begin{aligned} \varPhi _{r_{\text {T}}r_{\text {N}}}(u,r) = \left\{ \begin{array}{ll} 0 &{} \text { if } \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert \leqslant \mu r_{{\text {N}}} \\ 0 &{} \text { if } {\left\{ \begin{array}{ll} \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert> \mu r_n \\ r_{{\text {N}}} \leqslant 0 \end{array}\right. } \\ -\mu {\displaystyle \frac{\displaystyle r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}} }{\displaystyle \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert }} &{} \text { if } {\left\{ \begin{array}{ll} \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert> \mu r_n \\ r_{{\text {N}}} > 0 \end{array}\right. } \\ \end{array}\right. \end{aligned}$$
(169)
$$\begin{aligned} \varPhi _{r_{\text {T}}r_{\text {T}}}(u,r) = \left\{ \begin{array}{ll} 0 &{} \text { if } \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert \leqslant \mu r_{{\text {N}}}\\ I_2-\mu (r_{{\text {N}}})_+ \varGamma (r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}) &{} \text { if } \Vert r_{{\text {T}}} - \rho _{{\text {T}}} u_{{\text {T}}}\Vert > \mu r_{{\text {N}}}. \\ \end{array}\right. \end{aligned}$$
(170)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acary, V., Brémond, M., Huber, O. (2018). On Solving Contact Problems with Coulomb Friction: Formulations and Numerical Comparisons. In: Leine, R., Acary, V., Brüls, O. (eds) Advanced Topics in Nonsmooth Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-75972-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75972-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75971-5

  • Online ISBN: 978-3-319-75972-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation