An Ab Initio Study of Boric Acid, Borate, and their Interconversion

  • Conference paper
  • First Online:
Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 31))

Abstract

The chemistry of boric acid and monomeric borates is reviewed. Following a discussion of the crystal structures and nuclear magnetic resonance studies, ab initio results are presented of molecular ortho- and metaboric acid, (tetrahydroxo)borate, and the hydrates of orthoboric acid and borate. The structures and vibrational frequencies are compared with experiment. Attempts to study their interconversion lead us to a discussion of oxodihydroxoborate (the conjugate base of boric acid), and of the hydroxide-boric acid complex. It is hypothesized that the conversion of boric acid into borate proceeds via the oxodihydroxoborate intermediate. Finally, the calculated structures of hydroxodioxo- and trioxoborate are compared with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Richens DT (1997) The chemistry of aqua ions. Wiley, Chichester

    Google Scholar 

  2. Oi T (2000) Calculations of reducted partition function ratios of monomeric and dimeric boric acids and borates by the ab initio molecular orbital theory. J Nucl Sci Tech 37(2):166–172

    Article  CAS  Google Scholar 

  3. Oi T (2000) Ab initio molecular orbital calculations of reduced partition function ratios of polyboric acids and polyborate anions. Z Naturforsch A 55:623–628

    Article  CAS  Google Scholar 

  4. Oi T, Yanase S (2001) Calculations of reduced partition function ratios of hydrated monoborate anion by the ab initio molecular orbital theory. J Nucl Sci Tech 38:429–432

    Article  CAS  Google Scholar 

  5. Zeebe RE (2005) Stable boron isotope fractionation between dissolved B(OH)3 and B(OH)4. Geochim Cosmochim Acta 69:2753–2766

    Article  CAS  Google Scholar 

  6. Liu Y, Tossell JA (2005) Ab initio molecular orbital calculations for boron isotope fractionation on boric acids and borates. Geochim Cosmochim Acta 69:3995–4006

    Article  CAS  Google Scholar 

  7. Tossell JA (2005) Boric acid, “carbonic” acid, and N-containing oxyacids in aqueous solution: ab initio studies of structure, pKa, NMR shifts, and isotopic fractionation. Geochim Cosmochim Acta 69:5647–5658

    Article  CAS  Google Scholar 

  8. Rustad JR, Bylaska EJ (2007) Ab initio calculation of isotopic fractionation in B(OH)3(aq) and B(OH)4(aq). J Am Chem Soc 129:2222–2223

    Article  CAS  PubMed  Google Scholar 

  9. Rustad JR, Bylaska EJ, Jackson VE, Dixon DA (2010) Calculation of boron-isotope fractionation between B(OH)3(aq) and B(OH)4-(aq). Geochim Cosmochim Acta 74:2843–2850

    Article  CAS  Google Scholar 

  10. Zeebe RE, Sanyal A, Ortiz JD, Wolf-Gladrow DA (2001) A theoretical study of the kinetics of the boric acid-borate equilibrium in seawater. Marine Chem 73:113–124

    Article  CAS  Google Scholar 

  11. Kracek FC, Morey GW, Merwin HE (1938) The system, water-boron oxide. Am J Sci A 35:143–171

    Google Scholar 

  12. Blasdale WC, Slansky CM (1939) The solubility curves of boric acid and the borates of sodium. J Am Chem Soc 61:917–920

    Article  CAS  Google Scholar 

  13. Berger SV (1953) The crystal structure of boron oxide. Acta Chem Scand 7:611–622

    Article  CAS  Google Scholar 

  14. Strong SL, Kaplow R (1968) The structure of crystalline B2O3. Acta Crystallogr B 24:1032–1036

    Article  CAS  Google Scholar 

  15. Gurr GE, Montgomery PW, Knutson CD, Gorres BT (1970) The crystal structure of trigonal diboron trioxide. Acta Crystallogr B 26:906–915

    Article  CAS  Google Scholar 

  16. Effenberger H, Lengauer CL, Parthe E (2001) Trigonal B2O3 with higher space-group symmetry: results of a reevaluation. Monat Chem 132:1515–1517

    Article  CAS  Google Scholar 

  17. Prewitt CT, Shannon RD (1968) Crystal structure of a high-pressure form of B2O3. Acta Crystallogr B 24:869–874

    Article  CAS  Google Scholar 

  18. Zachariasen WH (1934) The crystal lattice of boric acid, BO3H3. Z Kristallogr 88:150–161

    CAS  Google Scholar 

  19. Cowley JM (1953) Structure analysis of single crystals by electron diffraction. II. Disordered boric acid structure. Acta Crystallogr 6:522–529

    Article  CAS  Google Scholar 

  20. Zachariasen WH (1954) The precise structure of orthoboric acid. Acta Crystallogr 7:305–310

    Article  CAS  Google Scholar 

  21. Shuvalov RR, Burns PC (2003) A new polytype of orthoboric acid, H3BO3-3T1. Acta Crystallogr C 59:i47–i49

    Article  CAS  PubMed  Google Scholar 

  22. Tazaki H (1940) Single crystals of metaboric acid. J Sci Hiroshima Univ A 10:37–54

    CAS  Google Scholar 

  23. Tazaki H (1940) The structure of orthorhombic metaboric acid, HBO2(a). J Sci Hiroshima Univ A 10:55–61

    CAS  Google Scholar 

  24. Peters CR, Milberg ME (1964) The refined structure of orthorhombic metaboric acid. Acta Crystallogr 17:229–234

    Article  CAS  Google Scholar 

  25. Zachariasen WH (1952) A new analytical method for solving complex crystal structures. Acta Crystallogr 5:68–73

    Article  CAS  Google Scholar 

  26. Zachariasen WH (1963) The crystal structure of monoclinic metaboric acid. Acta Crystallogr 16:385–389

    Article  CAS  Google Scholar 

  27. Freyhardt CC, Wiebcke M, Felsche J (2000) The monoclinic and cubic phases of metaboric acid (precise redeterminations). Acta Crystallogr C 56:276–278

    Article  PubMed  Google Scholar 

  28. Zachariasen WH (1963) The crystal structure of cubic metaboric acid. Acta Crystallogr 16:380–384

    Article  CAS  Google Scholar 

  29. Konig H, Hoppe R (1977) Zur Kenntnis von Na3BO3. Z Anorg Allg Chem 434:225–232

    Article  Google Scholar 

  30. Menchetti S, Sabelli C (1982) Structure of hydrated sodium borate Na2[BO2(OH)]. Acta Crystallogr B 38:1282–1284

    Article  Google Scholar 

  31. Block S, Perloff A (1963) The direct determination of the crystal structure of NaB(OH)42H2O. Acta Crystallogr 16:1233–1238

    Article  CAS  Google Scholar 

  32. Csetenyi LJ, Glasser FP, Howie RA (1993) Structure of sodium tetrahydroxyborate. Acta Crystallogr C 49:1039–1041

    Article  Google Scholar 

  33. Touboul M, Betourne E, Nowogrocki G (1995) Crystal structure and dehydration process of Li(H2O)4B(OH)4.2H2O. J Solid State Chem 115:549–553

    Article  CAS  Google Scholar 

  34. Zachariasen WH (1964) The crystal structure of lithium metaborate. Acta Crystallogr 17:749–751

    Article  CAS  Google Scholar 

  35. Hohne E (1964) Die Kristallstruktur des LiB(OH)4. Z Chem 4:431–432

    Article  Google Scholar 

  36. Fronczek FR, Aubry DA, Stanley GG (2001) Refinement of lithium tetrahydroxoborate with low-temperature CCD data. Acta Crystallogr E 57:i62–i63

    Article  CAS  Google Scholar 

  37. Onak TP, Landesman H, Williams RE, Shapiro I (1959) The B11 nuclear magnetic resonance chemical shifts and spin coupling values for various compounds. J Phys Chem 63:1533–1535

    Article  CAS  Google Scholar 

  38. Momii RK, Nachtrieb NH (1967) Nuclear magnetic resonance study of borate-polyborate equilibria in aqueous solution. Inorg Chem 6:1189–1192

    Article  CAS  Google Scholar 

  39. How MJ, Kennedy GR, Mooney EF (1969) The pH dependence of the boron-11 chemical-shift of borate-boric acid solutions. J Chem Soc D Chem Commun 267–268

    Article  CAS  Google Scholar 

  40. Smith HDJ, Wiersema RJ (1972) Boron-11 nuclear magnetic resonance study of polyborate ions in solution. Inorg Chem 11:1152–1154

    Article  CAS  Google Scholar 

  41. Covington AK, Newman KE (1973) Base dissociation constant of the borate ion from 11B chemical shifts. J Inorg Nucl Chem 35:3257–3262

    Article  CAS  Google Scholar 

  42. Henderson WG, How MJ, Kennedy GR, Mooney EF (1973) The interconversion of aqueous boron species and the interaction of borate with diols: a 11B N.M.R. study. Carbohydrate Res 28:1–12

    Article  CAS  Google Scholar 

  43. Janda R, Heller G (1979) 11B–NMR-spektroskopische Untersuchungen an waessrigen Polyboratloesungen. Z Naturforsch B 34:1078–1083

    Article  Google Scholar 

  44. Epperlein BW, Lutz O, Schwenk A (1975) Fourier-Kernresonanzuntersuchungen an 10B und 11B in Waessriger Loesung. Z Naturforsch A 30:955–958

    Google Scholar 

  45. Salentine CG (1983) High-field 11B NMR of alkali borates. Aqueous polyborate equilibria. Inorg Chem 22:3920–3924

    Article  CAS  Google Scholar 

  46. Frisch MJ et al (2004) Gaussian 03, Revision D.02. Gaussian Inc., Wallingford, CT

    Google Scholar 

  47. Gupta A, Tossell JA (1981) A theoretical study of bond distances, X-ray spectra and electron density distributions in borate polyhedra. Phys Chem Miner 7:159–164

    Article  CAS  Google Scholar 

  48. Gupta A, Tossell JA (1983) Quantum mechanical studies of distortions and polymerization of borate polyhedra. Am Miner 68:989–995

    CAS  Google Scholar 

  49. Zhang ZG, Boisen MBJ, Finger LW, Gibbs GV (1985) Molecular mimicry of the geometry and charge density distribution of polyanions in borate minerals. Am Miner 70:1238–1247

    CAS  Google Scholar 

  50. Zaki K, Pouchan C (1995) Vibrational analysis of orthoboric acid H3BO3 from ab initio second-order perturbation calculations. Chem Phys Lett 236:184–188

    Article  CAS  Google Scholar 

  51. Tian SX, Xu KZ, Huang M-B, Chen XJ, Yang JL, Jia CC. Theoretical study on infrared vibrational spectra of boric-acid in gas-phase using density functional methods. J Mol Struct (Theochem) 459:223–227, 459

    Article  CAS  Google Scholar 

  52. Tachikawa M (2004) A density functional study on hydrated clusters of orthoboric acid, B(OH)3(H2O)n (n = 1–5). J Mol Struct (Theochem) 710:139–150

    Article  CAS  Google Scholar 

  53. Stefani D, Pashalidis I, Nicolaides AV (2008) A computational study of the conformations of the boric acid (B(OH)3), its conjugate base ((HO)2BO) and borate anion (B(OH)4). J Mol Struct (Theochem) 853:33–38

    Article  CAS  Google Scholar 

  54. Zhou Y, Fang C, Fang Y, Zhu F (2011) Polyborates in aqueous borate solution: a Raman and DFT theory investigation. Spectrochim Acta A 83:82–87

    Article  CAS  Google Scholar 

  55. Ananthakrishnan R (1936) The Raman spectra of some boron compounds (methyl borate, ethyl borate, boron tri-bromide and boric acid). Proc Indian Acad Sci A 4:74–81

    Google Scholar 

  56. Ananthakrishnan R (1937) The Raman spectra of crystal powders. IV. Some organic and inorganic compounds. Proc Indian Acad Sci A 5:200–221

    Google Scholar 

  57. Hibben JH (1938) The constitution of some boric oxide compounds. Am J Sci A 35:113–125

    Google Scholar 

  58. Mitra SM (1938) Raman effect in boric acid and in some boron compounds. Ind J Phys 12:9–14

    CAS  Google Scholar 

  59. Kahovec L (1938) Studien zum Raman-Effekt. Mitteilung LXXXV. Borsauere und Derivate. Z Phys Chem 40:135–145

    Google Scholar 

  60. Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24:1253–1294

    Article  CAS  Google Scholar 

  61. Bethell DE, Sheppard N (1955) The infra-red spectrum and structure of boric acid. Trans Faraday Soc 51:9–15

    Article  CAS  Google Scholar 

  62. Servoss RR, Clark HM (1957) Vibrational spectra of normal and isotopically labeled boric acid. J Chem Phys 26:1175–1178

    Article  CAS  Google Scholar 

  63. Maya L (1976) Identification of polyborate and fluoropolyborate ions in solution by Raman spectroscopy. Inorg Chem 15:2179–2184

    Article  CAS  Google Scholar 

  64. Maeda M, Hirao T, Kotaka M, Kakihana H (1979) Raman spectra of polyborate ions in aqueous solution. J Inorg Nucl Chem 41:1217–1220

    Article  CAS  Google Scholar 

  65. Janda R, Heller G (1979) Ramanspektroskopische Untersuchungen an festen und in Wasser geloesten Polyboraten. Z Naturforsch B 34:585–590

    Article  Google Scholar 

  66. Ogden JS, Young NA (1988) The characterisation of molecular boric acid by mass spectrometry and matrix isolation infrared spectroscopy. J Chem Soc Dalton Trans 1645–1652

    Google Scholar 

  67. Gilson TR (1991) Characterization of ortho- and meta-boric acids in the vapour phase. J Chem Soc Dalton Trans 2463–2466

    Google Scholar 

  68. Andrews L, Burkholder TR (1992) Infrared spectra of molecular B(OH)3 and HOBO in solid argon. J Chem Phys 97:7203–7210

    Article  CAS  Google Scholar 

  69. Gupta A, Swanson DK, Tossell JA, Gibbs GV (1981) Calculation of bond distances, one-electron properties and electron density distributions in first-row tetrahedral hydroxy and oxyanions. Am Miner 66:601–609

    CAS  Google Scholar 

  70. Hess AC, McMillan PF, O’Keeffe M (1988) Torsional barriers and force fields in H4TO4 molecules and molecular ions (T = C, B, Al, Si). J Phys Chem 92:1785–1791

    Article  CAS  Google Scholar 

  71. Nielsen JR, Ward NE (1937) Raman spectrum and structure of the metaborate ion. J Chem Phys 5:201

    Article  CAS  Google Scholar 

  72. Edwards JO, Morrison GC, Ross VF, Schultz JW (1955) The structure of the aqueous borate ion. J Am Chem Soc 77:266–268

    Article  CAS  Google Scholar 

  73. Oertel RP (1972) Raman study of aqueous monoborate-polyol complexes. Equilibria in the monoborate-1,2-ethanediol system. Inorg Chem 11:544–549

    Article  CAS  Google Scholar 

  74. Liu Z, Gao B, Hu M, Li S, **a S (2003) FT-IR and Raman spectroscopic analysis of hydrated cesium borates and their saturated aqueous solution. Spectrochim Acta A 59:2741–2745

    Article  CAS  Google Scholar 

  75. Zhu FY, Fang CH, Fang Y, Zhou YQ, Ge HW, Liu HY (2014) Structure of aqueous potassium metaborate solution. J Mol Struct 1070:80–85

    Article  CAS  Google Scholar 

  76. Attina M, Cacace F, Occhiucci G, Ricci A (1992) Gaseous borate and polyborate anions. Inorg Chem 31:3114–3117

    Article  CAS  Google Scholar 

  77. Waton G, Mallo P, Candau SJ (1984) Temperature-jump rate study of the chemical relaxation of aqueous boric acid solutions. J Phys Chem 88:3301–3305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Atlantic Computational Excellence Network (ACEnet) for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory C. Pye .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 260 kb).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pye, C.C. (2018). An Ab Initio Study of Boric Acid, Borate, and their Interconversion. In: Wang, Y., Thachuk, M., Krems, R., Maruani, J. (eds) Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-74582-4_8

Download citation

Publish with us

Policies and ethics

Navigation