Vitamin D and Obesity

  • Chapter
  • First Online:
Extraskeletal Effects of Vitamin D

Abstract

Today obesity is epidemic, affecting more than 600 million individuals worldwide, and vitamin D insufficiency is considered to be present in more than half of the world’s population. Overweight status and obesity contribute to the development of type 2 diabetes, atherosclerosis, cancer, and vitamin D deficiency, resulting in increased mortality. The main etiologic factor for obesity is the disturbed balance between energy intake and energy expenditure caused by the modern lifestyle. Adipose tissue is an important endocrine organ producing a variety of cytokines, immune-related proteins, lipids, and enzymes involved in steroid hormone metabolism. Adipose tissue is also the main storage depot for vitamin D and its metabolites, serving as an endogenous source of vitamin D during the winter season. Adipose tissue secretes cytochrome P450 enzymes that are crucial for vitamin D metabolism. Furthermore, adipose tissue is a target for vitamin D, which is required for the normal function of both adipose cells (adipocytes) and adipose immune cells. Thus, obesity-induced vitamin D deficiency has an impact on adipose secretory functions. Vitamin D modulates adipocyte differentiation through mechanisms dependent or independent on vitamin D receptor (VDR). Signaling mediators of vitamin D involve the nuclear corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) which affect chromatin remodeling and gene transcription. Although it is tempting to suggest that overweight status or obesity can be reversed by vitamin D supplementation, experimental data do not support such a notion. In this chapter we summarize the current knowledge about the molecular mechanisms of vitamin D action in adipose tissue supported by data from clinical observational and basic science experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumanyika SK, Obarzanek E, Stettler N, Bell R, Field AE, Fortmann SP, et al. Population-based prevention of obesity: the need for comprehensive promotion of healthful eating, physical activity, and energy balance: a scientific statement from American Heart Association Council on Epidemiology and Prevention, Interdisciplinary Committee for Prevention (formerly the expert panel on population and prevention science). Circulation. 2008;118:428–64.

    Article  Google Scholar 

  2. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Heal Organ—Tech Rep Ser. 2000;894.

    Google Scholar 

  3. World Health Organization. Obesity. 2008. http://www.who.int/topics/obesity/en/. Accessed 22 Oct 2009.

  4. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–63. http://www.ncbi.nlm.nih.gov/pubmed/14726171.

    Article  Google Scholar 

  5. National Institutes of Health National Heart, Lung, and Blood Institute [Internet]. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. The evidence report. No 98–4083. 1998. http://www.nhlbi.nih.gov/files/docs/guidelines/obesity_guidelines_archive.pdf.

  6. Obesity. Preventing and managing the global epidemic. Report of a WHO consultation on obesity, Geneva, 3–5 June 1997. 1997.

    Google Scholar 

  7. Report of a WHO expert consultation, Geneva, 8–11 Dec 2008. 2008.

    Google Scholar 

  8. Zimmet PZ, Alberti KGMM. Introduction: globalization and the non-communicable disease epidemic. Obesity (Silver Spring). 2006;14(1):1–3. http://www.ncbi.nlm.nih.gov/pubmed/16493116.

    Article  Google Scholar 

  9. Waist circumference and waist-hip ratio. Report of a WHO expert consultation, Geneva, 8–11 Dec 2008. 2008. http://apps.who.int/iris/bitstream/10665/44583/1/9789241501491_eng.pdf.

  10. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80. http://www.ncbi.nlm.nih.gov/pubmed/16681555.

    Article  CAS  Google Scholar 

  11. Lapidus L, Bengtsson C, Larsson B, Pennert K, Rybo E, Sjöström L. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow up of participants in the population study of women in Gothenburg, Sweden. Br Med J (Clin Res Ed). 1984;289(6454):1257–61. http://www.ncbi.nlm.nih.gov/pubmed/6437507.

    Article  CAS  Google Scholar 

  12. Potts J, Simmons D. Sex and ethnic group differences in fat distribution in young United Kingdom South Asians and Europids. J Clin Epidemiol. 1994;47(8):837–41. http://www.ncbi.nlm.nih.gov/pubmed/7730886.

    Article  CAS  Google Scholar 

  13. Pasco JA, Holloway KL, Dobbins AG, Kotowicz MA, Williams LJ, Brennan SL. Body mass index and measures of body fat for defining obesity and underweight: a cross-sectional, population-based study. BMC Obes. 2014;1:9. http://www.ncbi.nlm.nih.gov/pubmed/26217501.

    Article  Google Scholar 

  14. Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL. Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord. 1998;22(1):39–47.

    Article  CAS  Google Scholar 

  15. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology. 2007;132(6):2087–102.

    Article  Google Scholar 

  16. Nguyen D, El-Serag H. The epidemiology of obesity. Gastroenterol Clin 2010;39(1):1–\.

    Article  CAS  Google Scholar 

  17. Kant AK, Graubard BI. Secular trends in patterns of self-reported food consumption of adult Americans: NHANES 1971-1975 to NHANES 1999–2002. Am J Clin Nutr. 2006;84(5):1215–23.

    Article  CAS  Google Scholar 

  18. Prentice AM, Jebb SA. Obesity in Britain: gluttony or sloth? BMJ. 1995;311(7002):437–9.

    Article  CAS  Google Scholar 

  19. Dietz WH, Gortmaker SL. Do we fatten our children at the television set? Obesity and television viewing in children and adolescents. Pediatrics. 1985;75(5):807–12.

    PubMed  Google Scholar 

  20. Lassale C, Tzoulaki I, Moons KGM, Sweeting M, Boer J, Johnson L, et al. Separate and combined associations of obesity and metabolic health with coronary heart disease: a pan-European case-cohort analysis. Eur Heart J. 2017. http://www.ncbi.nlm.nih.gov/pubmed/29020414.

  21. Renehan AG, Roberts DL, Dive C. Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem. 2008;114(1):71–83. http://www.ncbi.nlm.nih.gov/pubmed/18465361.

    Article  CAS  Google Scholar 

  22. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1–452.

    Google Scholar 

  23. Manson JE, Stampfer MJ, Hennekens CH, Willett WC. Body weight and longevity. A reassessment. JAMA. 1987;257(3):353–8.

    Article  CAS  Google Scholar 

  24. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.

    Article  CAS  Google Scholar 

  25. Stanley TL, Grinspoon SK. Effects of growth hormone-releasing hormone on visceral fat, metabolic, and cardiovascular indices in human studies. Growth Hormon IGF Res. 2015;25(2):59–65. http://www.ncbi.nlm.nih.gov/pubmed/25555516.

    Article  CAS  Google Scholar 

  26. Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122(7):481–6.

    Article  CAS  Google Scholar 

  27. Caspard H, Jabbour S, Hammar N, Fenici P, Sheehan JJ, Kosiborod M. Recent trends in the prevalence of type 2 diabetes and the association with abdominal obesity lead to growing health disparities in the United States. Diabetes Obes Metab. 2017. http://www.ncbi.nlm.nih.gov/pubmed/29077244.

  28. Muoio DM, Newgard CB. Obesity-related derangements in metabolic regulation. Annu Rev Biochem. 2006;75:367–401. http://www.ncbi.nlm.nih.gov/pubmed/16756496.

    Article  CAS  Google Scholar 

  29. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    Article  CAS  Google Scholar 

  30. Wang P, Mariman E, Renes J, Keijer J. The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol. 2008;216(1):3–13. http://www.ncbi.nlm.nih.gov/pubmed/18264975.

    Article  CAS  Google Scholar 

  31. Halberg N, Wernstedt-Asterholm I, Scherer PE. The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am. 2008;37(3):753–68, x–xi. http://www.ncbi.nlm.nih.gov/pubmed/18775362.

    Article  CAS  Google Scholar 

  32. Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010;88(1):33–9. http://www.ncbi.nlm.nih.gov/pubmed/20360405.

    Article  CAS  Google Scholar 

  33. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. http://www.ncbi.nlm.nih.gov/pubmed/14679176.

    Article  CAS  Google Scholar 

  34. Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des. 2008;14(12):1225–30. http://www.ncbi.nlm.nih.gov/pubmed/18473870.

    Article  CAS  Google Scholar 

  35. Möller K, Ostermann AI, Rund K, Thoms S, Blume C, Stahl F, et al. Influence of weight reduction on blood levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and oxylipins in obese subjects. Prostaglandins Leukot Essent Fatty Acids. 2016;106:39–49. http://www.ncbi.nlm.nih.gov/pubmed/26751601.

    Article  Google Scholar 

  36. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30. http://www.ncbi.nlm.nih.gov/pubmed/14679177.

    Article  CAS  Google Scholar 

  37. Hampton RY. ER stress response: getting the UPR hand on misfolded proteins. Curr Biol. 2000;10(14):R518–21. http://www.ncbi.nlm.nih.gov/pubmed/10898996.

    Article  CAS  Google Scholar 

  38. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell. 2000;101(5):451–4. http://www.ncbi.nlm.nih.gov/pubmed/10850487.

    Article  CAS  Google Scholar 

  39. Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol. 2002;18:575–99. http://www.ncbi.nlm.nih.gov/pubmed/12142265.

    Article  CAS  Google Scholar 

  40. Ozcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457–61. http://www.ncbi.nlm.nih.gov/pubmed/15486293.

    Article  Google Scholar 

  41. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548–56. http://www.ncbi.nlm.nih.gov/pubmed/15181022.

    Article  CAS  Google Scholar 

  42. Waldén TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol Endocrinol Metab. 2012;302(1):E19–31. http://www.ncbi.nlm.nih.gov/pubmed/21828341.

    Article  Google Scholar 

  43. Dani C, Billon N. Adipocyte precursors: developmental origins, self-renewal, and plasticity. In: Adipose tissue biology. New York: Springer; 2012. p. 1–16. http://springer.longhoe.net/10.1007/978-1-4614-0965-6_1.

    Google Scholar 

  44. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444(7121):847–53.

    Article  CAS  Google Scholar 

  45. Longo KA, Wright WS, Kang S, Gerin I, Chiang S-H, Lucas PC, et al. Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem. 2004;279(34):35503–9. http://www.ncbi.nlm.nih.gov/pubmed/15190075.

    Article  CAS  Google Scholar 

  46. Fontaine C, Cousin W, Plaisant M, Dani C, Peraldi P. Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells. Stem Cells. 2008;26(4):1037–46. http://www.ncbi.nlm.nih.gov/pubmed/18258719.

    Article  CAS  Google Scholar 

  47. Hirsch J, Batchelor B. Adipose tissue cellularity in human obesity. Clin Endocrinol Metab. 1976;5(2):299–311.

    Article  CAS  Google Scholar 

  48. Bjørndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011;2011:490650. http://www.ncbi.nlm.nih.gov/pubmed/21403826.

    Article  Google Scholar 

  49. Huber J, Kiefer FW, Zeyda M, Ludvik B, Silberhumer GR, Prager G, et al. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab. 2008;93(8):3215–21. http://www.ncbi.nlm.nih.gov/pubmed/18492752.

    Article  CAS  Google Scholar 

  50. Gutierrez DA, Puglisi MJ, Hasty AH. Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia. Curr Diab Rep. 2009;9(1):26–32. http://www.ncbi.nlm.nih.gov/pubmed/19192421.

    Article  CAS  Google Scholar 

  51. Hoene M, Weigert C. The role of interleukin-6 in insulin resistance, body fat distribution and energy balance. Obes Rev. 2008;9(1):20–9. http://www.ncbi.nlm.nih.gov/pubmed/17956545.

    CAS  PubMed  Google Scholar 

  52. Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7(10):1138–43. http://www.ncbi.nlm.nih.gov/pubmed/11590438.

    Article  CAS  Google Scholar 

  53. Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord. 2003;27(Suppl 3):S53–5. http://www.ncbi.nlm.nih.gov/pubmed/14704746.

    Article  CAS  Google Scholar 

  54. Souza SC, Palmer HJ, Kang YH, Yamamoto MT, Muliro KV, Paulson KE, et al. TNF-alpha induction of lipolysis is mediated through activation of the extracellular signal related kinase pathway in 3T3-L1 adipocytes. J Cell Biochem. 2003;89(6):1077–86. http://www.ncbi.nlm.nih.gov/pubmed/12898507.

    Article  CAS  Google Scholar 

  55. Dolan E, Swinton PA, Sale C, Healy A, O’Reilly J. Influence of adipose tissue mass on bone mass in an overweight or obese population: systematic review and meta-analysis. Nutr Rev. 2017;75(10):858–70. http://www.ncbi.nlm.nih.gov/pubmed/29028271.

    Article  Google Scholar 

  56. Heaney RP, Horst RL, Cullen DM, Armas LAG. Vitamin D3 distribution and status in the body. J Am Coll Nutr. 2009;28(3):252–6. http://www.ncbi.nlm.nih.gov/pubmed/20150598.

    Article  CAS  Google Scholar 

  57. Rosenstreich SJ, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50(3):679–87. http://www.ncbi.nlm.nih.gov/pubmed/4322721.

    Article  CAS  Google Scholar 

  58. Ellero S, Chakhtoura G, Barreau C, Langouët S, Benelli C, Penicaud L, et al. Xenobiotic-metabolizing cytochromes p450 in human white adipose tissue: expression and induction. Drug Metab Dispos. 2010;38(4):679–86. http://www.ncbi.nlm.nih.gov/pubmed/20035023.

    Article  CAS  Google Scholar 

  59. Li J, Byrne ME, Chang E, Jiang Y, Donkin SS, Buhman KK, et al. 1alpha,25-Dihydroxyvitamin D hydroxylase in adipocytes. J Steroid Biochem Mol Biol. 2008;112(1–3):122–6. http://www.ncbi.nlm.nih.gov/pubmed/18840526.

    Article  CAS  Google Scholar 

  60. Wamberg L, Christiansen T, Paulsen SK, Fisker S, Rask P, Rejnmark L, et al. Expression of vitamin D-metabolizing enzymes in human adipose tissue—the effect of obesity and diet-induced weight loss. Int J Obes (Lond). 2013;37(5):651–7. http://www.ncbi.nlm.nih.gov/pubmed/22828938.

    Article  CAS  Google Scholar 

  61. Park JM, Park CY, Han SN. High fat diet-induced obesity alters vitamin D metabolizing enzyme expression in mice. Biofactors. 2015;41(3):175–82. http://www.ncbi.nlm.nih.gov/pubmed/25904060.

    Article  CAS  Google Scholar 

  62. Foss YJ. Vitamin D deficiency is the cause of common obesity. Med Hypotheses. 2009;72(3):314–21. http://www.ncbi.nlm.nih.gov/pubmed/19054627.

    Article  CAS  Google Scholar 

  63. Kamei Y, Kawada T, Kazuki R, Ono T, Kato S, Sugimoto E. Vitamin D receptor gene expression is up-regulated by 1, 25-dihydroxyvitamin D3 in 3T3-L1 preadipocytes. Biochem Biophys Res Commun. 1993;193(3):948–55. http://www.ncbi.nlm.nih.gov/pubmed/7686756.

    Article  CAS  Google Scholar 

  64. Ching S, Kashinkunti S, Niehaus MD, Zinser GM. Mammary adipocytes bioactivate 25-hydroxyvitamin D3 and signal via vitamin D3 receptor, modulating mammary epithelial cell growth. J Cell Biochem. 2011;112(11):3393–405. http://www.ncbi.nlm.nih.gov/pubmed/21769914.

    Article  CAS  Google Scholar 

  65. Ding C, Gao D, Wilding J, Trayhurn P, Bing C. Vitamin D signalling in adipose tissue. Br J Nutr. 2012;108(11):1915–23. http://www.ncbi.nlm.nih.gov/pubmed/23046765.

    Article  CAS  Google Scholar 

  66. Abbas MA. Physiological functions of vitamin D in adipose tissue. J Steroid Biochem Mol Biol. 2017;165(Pt B):369–81. http://www.ncbi.nlm.nih.gov/pubmed/27520301.

    Article  CAS  Google Scholar 

  67. Privalsky ML. The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol. 2004;66:315–60. http://www.ncbi.nlm.nih.gov/pubmed/14977406.

    Article  CAS  Google Scholar 

  68. Blumberg JM, Tzameli I, Astapova I, Lam FS, Flier JS, Hollenberg AN. Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J Biol Chem. 2006;281(16):11205–13. http://www.ncbi.nlm.nih.gov/pubmed/16467308.

    Article  CAS  Google Scholar 

  69. Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006;290(5):E916–24. http://www.ncbi.nlm.nih.gov/pubmed/16368784.

    Article  CAS  Google Scholar 

  70. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4(4):611–7. http://www.ncbi.nlm.nih.gov/pubmed/10549292.

    Article  CAS  Google Scholar 

  71. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci. 1992;102(Pt 2):341–51. http://www.ncbi.nlm.nih.gov/pubmed/1400636.

    CAS  PubMed  Google Scholar 

  72. Dorheim MA, Sullivan M, Dandapani V, Wu X, Hudson J, Segarini PR, et al. Osteoblastic gene expression during adipogenesis in hematopoietic supporting murine bone marrow stromal cells. J Cell Physiol. 1993;154(2):317–28. http://www.ncbi.nlm.nih.gov/pubmed/8425912.

    Article  CAS  Google Scholar 

  73. Cianferotti L, Demay MB. VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. J Cell Biochem. 2007;101(1):80–8. http://www.ncbi.nlm.nih.gov/pubmed/17212358.

    Article  CAS  Google Scholar 

  74. Narvaez CJ, Matthews D, Broun E, Chan M, Welsh J. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology. 2009;150(2):651–61. http://www.ncbi.nlm.nih.gov/pubmed/18845643.

    Article  CAS  Google Scholar 

  75. Lee B-N-R, Kim T-H, Jun J-B, Yoo D-H, Woo J-H, Choi SJ, et al. Upregulation of interleukin-1β production by 1,25-dihydroxyvitamin D(3) in activated human macrophages. Mol Biol Rep. 2011;38(3):2193–201. http://www.ncbi.nlm.nih.gov/pubmed/20848209.

    Article  CAS  Google Scholar 

  76. Tulk SE, Liao K-C, Muruve DA, Li Y, Beck PL, MacDonald JA. Vitamin D3 metabolites enhance the NLRP3-dependent secretion of IL-1β from human THP-1 monocytic cells. J Cell Biochem. 2015;116(5):711–20. http://www.ncbi.nlm.nih.gov/pubmed/25639477.

    Article  CAS  Google Scholar 

  77. Giulietti A, van Etten E, Overbergh L, Stoffels K, Bouillon R, Mathieu C. Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract. 2007;77(1):47–57. http://www.ncbi.nlm.nih.gov/pubmed/17112620.

    Article  CAS  Google Scholar 

  78. Zhang Z, Yuan W, Sun L, Szeto FL, Wong KE, Li X, et al. 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int. 2007;72(2):193–201. http://www.ncbi.nlm.nih.gov/pubmed/17507908.

    Article  CAS  Google Scholar 

  79. Chen Y, Kong J, Sun T, Li G, Szeto FL, Liu W, et al. 1,25-Dihydroxyvitamin D3 suppresses inflammation-induced expression of plasminogen activator inhibitor-1 by blocking nuclear factor-κB activation. Arch Biochem Biophys. 2011;507(2):241–7. http://www.ncbi.nlm.nih.gov/pubmed/21176770.

    Article  CAS  Google Scholar 

  80. Lorente-Cebrián S, Eriksson A, Dunlop T, Mejhert N, Dahlman I, Aström G, et al. Differential effects of 1α,25-dihydroxycholecalciferol on MCP-1 and adiponectin production in human white adipocytes. Eur J Nutr. 2012;51(3):335–42. http://www.ncbi.nlm.nih.gov/pubmed/21701898.

    Article  Google Scholar 

  81. Neve A, Corrado A, Cantatore FP. Immunomodulatory effects of vitamin D in peripheral blood monocyte-derived macrophages from patients with rheumatoid arthritis. Clin Exp Med. 2014;14(3):275–83. http://www.ncbi.nlm.nih.gov/pubmed/23824148.

    Article  CAS  Google Scholar 

  82. Calton EK, Keane KN, Newsholme P, Soares MJ. The impact of vitamin D levels on inflammatory status: a systematic review of immune cell studies. PLoS One. 2015;10(11):e0141770. http://www.ncbi.nlm.nih.gov/pubmed/26528817.

    Article  Google Scholar 

  83. Ding C, Wilding JPH, Bing C. 1,25-dihydroxyvitamin D3 protects against macrophage-induced activation of NFÎşB and MAPK signalling and chemokine release in human adipocytes. PLoS One. 2013;8(4):e61707. http://www.ncbi.nlm.nih.gov/pubmed/23637889.

    Article  CAS  Google Scholar 

  84. Farhangi MA, Nameni G, Hajiluian G, Mesgari-Abbasi M. Cardiac tissue oxidative stress and inflammation after vitamin D administrations in high fat-diet induced obese rats. BMC Cardiovasc Disord. 2017;17(1):161. http://www.ncbi.nlm.nih.gov/pubmed/28629326.

    Article  Google Scholar 

  85. Karkeni E, Bonnet L, Marcotorchino J, Tourniaire F, Astier J, Ye J, et al. Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: a new mechanism for the regulation of inflammation by vitamin D. Epigenetics. 2017. http://www.ncbi.nlm.nih.gov/pubmed/28055298.

  86. Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–6. http://www.ncbi.nlm.nih.gov/pubmed/16885212.

    Article  CAS  Google Scholar 

  87. Gaudet AD, Fonken LK, Gushchina LV, Aubrecht TG, Maurya SK, Periasamy M, et al. miR-155 deletion in female mice prevents diet-induced obesity. Sci Rep. 2016;6:22862. http://www.ncbi.nlm.nih.gov/pubmed/26953132.

    Article  CAS  Google Scholar 

  88. Dambal S, Giangreco AA, Acosta AM, Fairchild A, Richards Z, Deaton R, et al. microRNAs and DICER1 are regulated by 1,25-dihydroxyvitamin D in prostate stroma. J Steroid Biochem Mol Biol. 2017;167:192–202. http://www.ncbi.nlm.nih.gov/pubmed/28089917.

    Article  CAS  Google Scholar 

  89. Mansouri L, Lundwall K, Moshfegh A, Jacobson SH, Lundahl J, Spaak J. Vitamin D receptor activation reduces inflammatory cytokines and plasma MicroRNAs in moderate chronic kidney disease—a randomized trial. BMC Nephrol. 2017;18(1):161. http://www.ncbi.nlm.nih.gov/pubmed/28511692.

    Article  Google Scholar 

  90. Chen Y, Du J, Zhang Z, Liu T, Shi Y, Ge X, et al. MicroRNA-346 mediates tumor necrosis factor α-induced downregulation of gut epithelial vitamin D receptor in inflammatory bowel diseases. Inflamm Bowel Dis. 2014;20(11):1910–8. http://www.ncbi.nlm.nih.gov/pubmed/25192497.

    Article  Google Scholar 

  91. Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W, et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes. 2014;63(11):3686–98. http://www.ncbi.nlm.nih.gov/pubmed/24954193.

    Article  CAS  Google Scholar 

  92. Bruyère O, Malaise O, Neuprez A, Collette J, Reginster J-Y. Prevalence of vitamin D inadequacy in European postmenopausal women. Curr Med Res Opin. 2007;23(8):1939–44.

    Article  Google Scholar 

  93. Pinelli NR, Jaber LA, Brown MB, Herman WH. Serum 25-hydroxy vitamin d and insulin resistance, metabolic syndrome, and glucose intolerance among Arab Americans. Diabetes Care. 2010;33(6):1373–5.

    Article  CAS  Google Scholar 

  94. Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10(2):e1001383.

    Article  Google Scholar 

  95. Pannu PK, Zhao Y, Soares MJ. Reductions in body weight and percent fat mass increase the vitamin D status of obese subjects: a systematic review and metaregression analysis. Nutr Res. 2016;36(3):201–13. http://www.ncbi.nlm.nih.gov/pubmed/26923506.

    Article  CAS  Google Scholar 

  96. Rock CL, Emond JA, Flatt SW, Heath DD, Karanja N, Pakiz B, et al. Weight loss is associated with increased serum 25-hydroxyvitamin D in overweight or obese women. Obesity (Silver Spring). 2012;20(11):2296–301. http://www.ncbi.nlm.nih.gov/pubmed/22402737.

    Article  CAS  Google Scholar 

  97. Mason C, **ao L, Imayama I, Duggan CR, Bain C, Foster-Schubert KE, et al. Effects of weight loss on serum vitamin D in postmenopausal women. Am J Clin Nutr. 2011;94(1):95–103. http://www.ncbi.nlm.nih.gov/pubmed/21613554.

    Article  CAS  Google Scholar 

  98. Aasheim ET, Björkman S, Søvik TT, Engström M, Hanvold SE, Mala T, et al. Vitamin status after bariatric surgery: a randomized study of gastric bypass and duodenal switch. Am J Clin Nutr. 2009;90(1):15–22. http://www.ncbi.nlm.nih.gov/pubmed/19439456.

    Article  Google Scholar 

  99. Pugnale N, Giusti V, Suter M, Zysset E, Héraïef E, Gaillard RC, et al. Bone metabolism and risk of secondary hyperparathyroidism 12 months after gastric banding in obese pre-menopausal women. Int J Obes Relat Metab Disord. 2003;27(1):110–6. http://www.ncbi.nlm.nih.gov/pubmed/12532162.

    Article  CAS  Google Scholar 

  100. Nadler EP, Youn HA, Ren CJ, Fielding GA. An update on 73 US obese pediatric patients treated with laparoscopic adjustable gastric banding: comorbidity resolution and compliance data. J Pediatr Surg. 2008;43(1):141–6. http://www.ncbi.nlm.nih.gov/pubmed/18206472.

    Article  Google Scholar 

  101. Himbert C, Ose J, Delphan M, Ulrich CM. A systematic review of the interrelation between diet- and surgery-induced weight loss and vitamin D status. Nutr Res. 2017;38:13–26. http://www.ncbi.nlm.nih.gov/pubmed/28381350.

    Article  CAS  Google Scholar 

  102. Sneve M, Figenschau Y, Jorde R. Supplementation with cholecalciferol does not result in weight reduction in overweight and obese subjects. Eur J Endocrinol. 2008;159(6):675–84.

    Article  CAS  Google Scholar 

  103. Zittermann A, Frisch S, Berthold HK, Götting C, Kuhn J, Kleesiek K, et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr. 2009;89(5):1321–7.

    Article  CAS  Google Scholar 

  104. Salehpour A, Shidfar F, Hosseinpanah F, Vafa M, Razaghi M, Hoshiarrad A, et al. Vitamin D3 and the risk of CVD in overweight and obese women: a randomised controlled trial. Br J Nutr. 2012;108(10):1866–73.

    Article  CAS  Google Scholar 

  105. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3. http://www.ncbi.nlm.nih.gov/pubmed/10966885.

    Article  CAS  Google Scholar 

  106. Di Nisio A, De Toni L, Sabovic I, Rocca MS, De Filippis V, Opocher G, et al. Impaired release of vitamin D in dysfunctional adipose tissue: new cues on vitamin D supplementation in obesity. J Clin Endocrinol Metab. 2017;102(7):2564–74. http://www.ncbi.nlm.nih.gov/pubmed/28187222.

    Article  Google Scholar 

  107. Carrelli A, Bucovsky M, Horst R, Cremers S, Zhang C, Bessler M, et al. Vitamin D storage in adipose tissue of obese and normal weight women. J Bone Miner Res. 2017;32(2):237–42. http://www.ncbi.nlm.nih.gov/pubmed/27542960.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimiter Avtanski PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avtanski, D., Garcia, A., Liao, E.P. (2018). Vitamin D and Obesity. In: Liao, E. (eds) Extraskeletal Effects of Vitamin D. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-73742-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73742-3_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-73741-6

  • Online ISBN: 978-3-319-73742-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation