Glassy Dynamics as Reflected in the Inter- and Intra-molecular Interactions

  • Chapter
  • First Online:
The Scaling of Relaxation Processes

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

The inter- and intra-molecular interactions of low molecular weight and polymeric glass-forming model systems are studied by broadband dielectric (BDS) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy . Analyzing the temperature dependence of specific IR absorption bands, reflecting the intra-molecular potentials of dedicated molecular moieties, enables one to unravel on an intra-molecular scale the process of glass formation and to compare it with the dielectrically determined primarily inter-molecular dynamics. Molecular systems to be studied are typical glass formers as the polyalcohols glycerol , threitol , xylitol , and sorbitol , as salol and three poly(ethylene-glycol) derivatives, namely poly(ethylene-glycol)methyl-ether-acrylate , poly(ethylene-glycol)phenyl-ether-acrylate , and poly(ethylene-glycol)-dibenzoate . Within this experimental framework, a wealth of novel information is obtained proving that the different molecular moieties of a glass former show characteristic features in the course of glassy solidification. This demonstrates the fundamental importance of intra-molecular dynamics for the dynamic glass transition, providing refined insights into the underlying interactions beyond coarse-grained models, approximating, for instance, glass-forming molecules as hard spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wong J, Angell CA (1976) Glass: structure by spectroscopy. Marcel Dekker, New York

    Google Scholar 

  2. Donth EJ (1981) Glasübergang. Akademie Verlag, Berlin

    Google Scholar 

  3. Zallen R (1983) The physics of amorphous Solids. Wiley, New York

    Book  Google Scholar 

  4. Elliott SR (1990) Physics of amorphous materials. Longman Scientific & Technical, London

    Google Scholar 

  5. Donth EJ (1992) Relaxation and thermodynamics in polymers, glass transition. Akademie Verlag, Berlin

    Google Scholar 

  6. Donth EJ (2001) The glass transition. Springer Verlag, Berlin

    Book  Google Scholar 

  7. Ngai K (2011) Relaxation and diffusion in complex systems. Springer Verlag, Berlin

    Book  Google Scholar 

  8. Götze W (2012) Complex dynamics of glass-forming liquids—a mode-coupling theory. Oxford Scientific Publications, Oxford

    Google Scholar 

  9. Papadopoulos P, Kossack W, Kremer F (2013) Soft Matter 9:1600–1603

    Article  CAS  Google Scholar 

  10. Kossack W, Adrjanowicz K, Tarnacka M, Kipnusu WK, Dulski M, Mapesa EU, Kaminski K, Pawlus S, Paluch M, Kremer F (2013) Phys Chem Chem Phys 15:20641–20650

    Article  CAS  PubMed  Google Scholar 

  11. Kipnusu WK, Kossack W, Iacob C, Zeigermann P, Jasiurkowska M, Sangoro JR, Valiullin R, Kremer F (2013) Soft Matter 9:4681–4686

    Article  CAS  Google Scholar 

  12. Kossack W, Kipnusu WK, Dulski M, Adrjanowicz K, Kaminska E, Mapesa EU, Tress M, Kaminski K, Kremer F (2014) Chem Phys 140:215101

    Google Scholar 

  13. Döß A, Paluch M, Sillescu H, Hinze G (2002) J Chem Phys 117(14):6582–6589

    Article  CAS  Google Scholar 

  14. Döß A, Paluch M, Sillescu H, Hinze G (2002) Phys Rev Lett 88:095701

    Article  CAS  PubMed  Google Scholar 

  15. Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Springer

    Google Scholar 

  16. Adrjanowicz K, Kolodziejczyk K, Kipnusu WK, Tarnacka M, Mapesa EU, Kaminska E, Pawlus S, Kaminski K, Paluch M (2015) J Phys Chem C 119(25):14366

    Article  CAS  Google Scholar 

  17. Wagner H, Richert R (1999) J Chem Phys 110(23):11660–11663

    Article  CAS  Google Scholar 

  18. Paluch M, Roland CM, Pawlus S, Zioło J, Ngai KL (2003) Phys Rev Lett 91(11)

    Google Scholar 

  19. Böhmer R, Diezemann G, Geil B, Hinze G, Nowaczyk A, Winterlich M (2006) Phys Rev Lett 97(13)

    Google Scholar 

  20. Socrates G (2001) Infrared and Raman characteristic group frequencies. Tables and Charts, 3rd edn. Wiley

    Google Scholar 

  21. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41(1):48–76

    Article  CAS  Google Scholar 

  22. Blazhnov IV, Malomuzh NP, Lishchuk SV (2004) J Chem Phys 121(13):6435–6441

    Article  CAS  PubMed  Google Scholar 

  23. Kastner S, Köhler M, Goncharov Y, Lunkenheimer P, Loidl A (2011) J Non-Cryst Solids Bd 357(2):510–514

    Article  CAS  Google Scholar 

  24. Lunkenheimer P, Kastner S, Köhler M, Loidl A (2010) PRE 81:051504

    Article  CAS  PubMed  Google Scholar 

  25. Ngai KL, Lunkenheimer P, León C, Schneider U, Brand R, Loidl A (2001) J Chem Phys 115(3):1405–1413

    Article  CAS  Google Scholar 

  26. Köhler M, Lunkenheimer P, Goncharov Y, When R Loidl A (2010) J Non-Cryst Solids 356(11–17):529–534

    Google Scholar 

  27. Bahar I, Erman B, Kremer F, Fischer EW (1992) Macromolecules 25:816–825

    Article  CAS  Google Scholar 

  28. Ramos M, Correia NT, Diogo HP (2004) Phys Chem Chem Phys 6(4):793–798

    Article  CAS  Google Scholar 

  29. Hansen C (1997) Dissertation Universität Mainz

    Google Scholar 

  30. Chang, Fujara F, Geil B, Heuberger G (1994) J Non-Cryst Solids 172–174

    Google Scholar 

  31. Döß A, Hinze G, Böhmer R, Sillescu H (2000) J Chem Phys 112(13):5884–5892

    Article  Google Scholar 

  32. Hanaya M, Hikima T, Hatase M, Oguni M (2002) J Chem Thermodyn 2(34):1173–1193

    Article  CAS  Google Scholar 

  33. Cheng SZD (ed) (2002) Handbook of thermal analysis and calorimetry. Elsevier Science B.V

    Google Scholar 

  34. Paladi F, Oguni M (2003) J Phys: Condens Matter 15(23):3909

    CAS  Google Scholar 

  35. Hanaya M, Hikima T, Hatase M, Oguni M (2002) J Chem Thermodyn 34(8):1173–1193

    Article  CAS  Google Scholar 

  36. Eckstein E, Qian J, Hentschke R, Thurn-Albrecht T, Steffen W, Fischer EW (2000) Phys Rev 113(11):4751–4762

    CAS  Google Scholar 

  37. Hikima Z, Hanaya M, Oguni M (1995) Solid State Commun 93(8):713–717

    Article  CAS  Google Scholar 

  38. Bilgram JH, Dürig U, Wächter M, Seiler P (1982) J Cryst Growth 57(1):1–5

    Article  CAS  Google Scholar 

  39. Baran J, Davydova NA (2010) Phys Rev E 81(3):031503

    Article  CAS  Google Scholar 

  40. Hanuza J (2004) Vib Spectrosc 34(2):253

    Article  CAS  Google Scholar 

  41. Kalampounias AG, Yannopoulos SN, Steffen W, Kirillova LI, Kirillov SA (2003) J Chem Phys 118(18):8340–8349

    Article  CAS  Google Scholar 

  42. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2(1):73–78

    Google Scholar 

  43. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650. The value is Calculated based on Density Functional Theory calculations using the Orca program package (v 4) with 6-311 ++G(2d2p) basis sets

    Google Scholar 

  44. Bartoš J, Iskrová M, Köhler M, Wehn R, Šauša O, Lunkenheimer P, Krištiak J, Loidl A (2011) Eur Phys J E 34:104

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi Y, Tadokoro H (1973) Macromolecules 6:672–675

    Article  CAS  Google Scholar 

  46. Barroso-Bujans F, Cerveny S, Alegría A, Colmenero J (2013) Macromolecules 46:7932–7939

    Article  CAS  Google Scholar 

  47. Barroso-Bujans F, Fernandez-Alonso F, Pomposo JA, Cerveny S, Alegría A, Colmenero J (2012) ACS Macro Lett 1(5):550–554

    Article  CAS  Google Scholar 

  48. Matsuura H, Fukuhara K (1986) J Polym Sci B Polym Phys 24(7):1383–1400

    Article  CAS  Google Scholar 

  49. Rozenberg M (1998) Spectrochim Acta Part A Mol Biomol Spectrosc 54(12):1819–1826

    Article  Google Scholar 

  50. Fragiadakis D, Runt J (2010) Macromolecules 43(2):1028–1034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Kremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kremer, F., Kossack, W., Anton, A.M. (2018). Glassy Dynamics as Reflected in the Inter- and Intra-molecular Interactions. In: Kremer, F., Loidl, A. (eds) The Scaling of Relaxation Processes. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-72706-6_3

Download citation

Publish with us

Policies and ethics

Navigation