Abstract

A wide range of ecotechnologies has been applied to treatment of variable stormwater and wastewater flows. Stormwater ponds and basins were already introduced as common ‘end-of-the-pipe’ treatment solutions in the 1960s, almost parallel to the first attempts to develop structured wastewater treatment with the help of plants, inspired by natural wetlands. Constructed wetlands specifically designed for the treatment of variable flows emerged in the 1990s and were joined by a growing group of vegetated filter systems, named bioretention filters, raingardens or retention soil filters, all following the principle of gravity-driven wastewater filtration. This chapter provides a general overview of these treatment facilities, including swales and buffer strips. Although the latter ones are gravity-driven filtration systems, they are commonly used for the treatment of road runoff and are highly adapted to fit into their landscape structure, they are described in a separate section. Each section includes references to detailed design and operation guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albert A, Brisson J, Dubé J, Lavoie C (2013) Do woody plants prevent the establishment of common reed along highways? Insights from Southern Quebec. Invasive Plant Sci Manag 6(4):585–592

    Article  Google Scholar 

  • Al-Rubaei A (2016) Long-term performance, operation and maintenance needs of stormwater control measures. Dissertation, Luleå University of Technology

    Google Scholar 

  • Al-Rubaei AM, Engström M, Viklander M, Blecken GT (2016) Long-term hydraulic and treatment performance of a 19-year old constructed stormwater wetland Finally maturated or in need of maintenance? Ecol Eng 95:73–82

    Article  Google Scholar 

  • Ávila C, Reyes C, Bayona JM, García J (2013) Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox. Water Res 47:315–325

    Article  Google Scholar 

  • Bäckström M (2002) Sediment transport in grassed swales during simulated runoff events. Water Sci Technol 45(7):41–49

    Google Scholar 

  • Bäckström M (2003) Grassed swales for stormwater pollution control during rain and snowmelt. Water Sci Technol 48(9):123–132

    Google Scholar 

  • Birch GF, Matthai C, Fazeli MS, Suh J (2004) Efficiency of a constructed wetland in removing contaminants from stormwater. Wetlands 24(2):459–466

    Google Scholar 

  • Blecken GT, Marsalek J, Viklander M (2011) Laboratory study on stormwater biofiltration in cold temperatures: metal removal and fates. Water Air Soil Pollut 219:303–317

    Article  CAS  Google Scholar 

  • Boogaard FC, van de Ven F, Langeveld JG, van de Giesen N (2014) Stormwater quality characteristics in (Dutch) urban areas and performance of settlement basins. Challenges 5:112–122

    Article  Google Scholar 

  • Borne KE (2014) Floating treatment wetland influences on the fate and removal performance of phosphorus in stormwater retention ponds. Ecol Eng 69:76–82

    Article  Google Scholar 

  • Borne KE, Fassman EA, Tanner CC (2013a) Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc. Ecol Eng 54:173–182

    Article  Google Scholar 

  • Borne K, Tanner CC, Fassman-Beck E (2013b) Stormwater nitrogen removal performance of a floating treatment wetland. Water Sci Tech 68(7):1657–1664

    Article  CAS  Google Scholar 

  • Borne K, Fassman-Beck E, Tanner C (2014) Floating treatment wetland influences on the fate of metals in road runoff retention ponds. Water Res 48:430–442

    Article  CAS  Google Scholar 

  • Borne KE, Fassman-Beck EA, Winston RJ, Hunt WF (2015) Implementation and maintenance of floating treatment wetlands for urban stormwater management. J Environ Eng 144(11):04015030

    Article  Google Scholar 

  • Brix H (1997) Do Macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35(5):11–17

    CAS  Google Scholar 

  • Bulc T, Slak AS (2003) Performance of constructed wetland for highway runoff treatment. Water Sci Technol 48(2):315–322

    CAS  Google Scholar 

  • Burgess ND, Hirons GJ (1992) Creation and management of artificial nesting sites for wetland birds. J Environ Manage 34:285–295

    Article  Google Scholar 

  • Carleton JN, Grizzard TJ, Godrej AN, Post HE (2001) Factors affecting the performance of stormwater treatment wetlands. Water Res 35(6):1552–1562

    Article  CAS  Google Scholar 

  • Chen Z, Cuervo DP, Müller JA, Wiessner A, Köser H, Vymazal J, Kästner M, Kuschk P (2016) Hydroponic root mats for wastewater treatment—a review. Environ Sci Pollut Res 23:15911–15928

    Article  CAS  Google Scholar 

  • Clar ML, Barfield BJ, O’Connor TP (2004) Stormwater best management practice design guide. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA

    Google Scholar 

  • Comings KJ, Booth DB, Horner RR (2000) Storm water pollutant removal by two wet ponds in bellevue, Washington. J Environ Eng 126(4):321–330

    Google Scholar 

  • Corapciogliu Y, Haridas A (1984) Transport and fate of microorganisms in porous media: a theoretical investigation. J Hydrol 72:149–169

    Article  Google Scholar 

  • Davis AP, Stagge JH, Jamil E, Kim H (2012) Hydraulic performance of grass swales for managing highway runoff. Water Res 46(20):6775–6786

    Article  CAS  Google Scholar 

  • Deletic A (2005) Sediment transport in urban runoff over grassed areas. J Hydrol 301(1/4):108–122

    Article  Google Scholar 

  • Deletic A, Fletcher TD (2006) Performance of grass filters used for stormwater treatment—a field and modelling study. J Hydrol 317(3/4):261–275

    Article  Google Scholar 

  • Dittmer U (2006) Prozesse des Rückhaltes und Umsatzes von Kohlenstoff- und Stickstoffverbindungen in Retentionsbodenfiltern zur Mischwasserbehandlung (Processes and transformation of carbon and nitrogen compounds in retention soil filters for combined sewer overflow treatment). Dissertation, University of Kaiserslautern, Kaiserslautern. https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1825 (in German)

  • Dittmer U, Meyer D, Tondera K, Lambert B, Fuchs S (2016) Treatment of CSO in retention soil filters—lessons learned from 25 years of research and practice. In: Proceedings of the 9th NOVATECH, Lyon, France

    Google Scholar 

  • DWA-A 178 (2017) Arbeitsblatt DWA-A 178: Empfehlungen für Planung, Bau und Betrieb von Retentionsbodenfiltern zur weitergehenden Regenwasserbehandlung im Misch- und Trennsystem (Recommendations for planning, construction and operation of retention soil filters for advanced stormwater treatment in combined and separate sewer systems). German Association for Water Management, Wastewater and Waste, GFA, Hennef (in German; draft)

    Google Scholar 

  • Ellis JB, Shutes RBE, Revitt MD (2003) Constructed wetlands and links with sustainable drainage systems. Environment Agency, Bristol. https://eprints.mdx.ac.uk/6076/1/SP2-159-TR1-e-p.pdf. Accessed 3 Aug 2017

  • Fassman-Beck E, Wang S, Simcock R, Ruifen L (2014) Assessing the effects of bioretention’s engineered media composition and compaction on hydraulic conductivity. In: Proceedings of 13th International Conference on Urban Drainage, Sarawak, Malaysia, 7–12 September 2014

    Google Scholar 

  • Fonder N, Headley T (2013) The taxonomy of treatment wetlands: a proposed classification and nomenclature system. Ecol Eng 51:203–211

    Article  Google Scholar 

  • German J, Svensson G, Gustafsson LG, Vikström M (2003) Modelling of temperature effects on removal efficiency and dissolved oxygen concentrations in stormwater ponds. Water Sci Technol 48(9):145–154

    CAS  Google Scholar 

  • Gold AC, Thompson SP, Piehler MF (2017) Water quality before and after watershed-scale implementation of stormwater wet ponds in the coastal plain. Ecol Eng 105:240–251

    Article  Google Scholar 

  • Greb SR, Bannerman RT (1997) Influence of particle size on wet pond effectiveness. Water Environ Res 69(6):1134–1138

    Article  CAS  Google Scholar 

  • Griffin P (2003) Ten years experience of treating all flows from combined sewerage systems using package plant and constructed wetland combinations. Water Sci Technol 48:93–99

    CAS  Google Scholar 

  • Grotehusmann D, Lambert B, Fuchs S, Uhl M, Leutnant D (2017) Erhebungsuntersuchung zur Optimierung der Retentionsbodenfilter in NRW (Investigation to optimize retention soil filters in NRW). Final report, Ministry for Environment, Nature Conservation, Agriculture and Consumer Protection of the German Federal State of North 289 Rhine-Westphalia (Ed.), Düsseldorf. https://www.lanuv.nrw.de/uploads/tx_mmkresearchprojects/Abschlussbericht_RBF_NRW.pdf (in German)

  • Hasselbach R (2013) Leistungsfähigkeit von Pflanzenkläranlagen im Mischsystem mit Lavasand als Filtersubstrat (Performance of Constructed Wetlands in a combined sewer system having lava sand as filter substrate). Doctoral Thesis, Technical University of Kaiserslautern, Germany. https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3507 (in German)

  • Headley TR, Tanner CC (2012) Constructed wetlands with floating emergent macrophytes: an innovative stormwater treatment technology. Crit Rev Environ Sci Technol 42(21):2261–2310

    Article  CAS  Google Scholar 

  • Healthy Waterways (2006) Water sensitive urban design—technical design guidelines for South East Queensland. Report by Moreton Bay Waterways and Catchment Partnership and Brisbane City Council

    Google Scholar 

  • Hoeger S (1988) Schwimmkampen: Germany’s artificial floating islands. J Soil Water Conserv 43:304–306

    Google Scholar 

  • Hogg EH, Wein RW (1988) The contribution of Typha components to floating mat buoyancy. Ecol 69:1025–1031

    Article  Google Scholar 

  • Istenič D, Arias CA, Vollertsen J, Nielsen AH, Wium-Andersen T, Hvitved-Jacobsen T, Brix H (2012) Improve urban stormwater treatment and pollutant removal pathways in amended wet detention ponds. J Environ Sci Health, Part A 47(10):1466–1477

    Google Scholar 

  • Jones TG, Willis N, Gough R, Freeman C (2017) An experimental use of floating treatment wetlands (FTWs) to reduce phytoplankton growth in freshwaters. Ecol Eng 99:316–323

    Article  Google Scholar 

  • Kachchu MMA, Lucke T, Boogaard F (2014) Preliminary investigation into the pollution reduction performance of swales used in a stormwater treatment train. J Water Sci Technol 69(5):1014–1020

    Article  Google Scholar 

  • Kadlec RH, Reddy KR (2001) Temperature effects in treatment wetlands. Water Environ Res 73(5):543–557

    Article  CAS  Google Scholar 

  • Kadlec R, Wallace S (2008) Treatment wetlands, 2nd edn. CRC Press, Taylor & Francis Group

    Google Scholar 

  • Karlsson K, Viklander M, Scholes L, Revitt M (2010) Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. J Hazard Mater 178(1–3):612–618

    Article  CAS  Google Scholar 

  • Keizer-Vlek HE, Verdonschot PFM, Verdonschot RCM, Dekkers D (2014) The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecol Eng 73:684–690

    Article  Google Scholar 

  • Knowles P, Dotro G, Nivala J (2011) Clogging in subsurface-flow treatment wetlands: occurrence and contributing factors. Ecol Eng 37(2):99–112

    Article  Google Scholar 

  • Kosolapov DB, Kuschk P, Vainshtein MB, Vatsourina AV, Wießner A, Kästner M, Müller RA (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411

    Article  CAS  Google Scholar 

  • Laber J (2000) Constructed wetland system for storm water treatment. J Environ Sci Health, Part A 35:1279–1288

    Article  Google Scholar 

  • Leisenring M, Clary J, Hobson P (2014) International Stormwater Best Management Practices (BMP) database pollutant category statistical summary report: solids, bacteria, nutrients, and metals. http://www.bmpdatabase.org/performance-summaries.html

  • Lenhart HA, Hunt WF (2011) Evaluating four storm-water performance metrics with a North Carolina coastal plain storm-water wetland. J Environ Eng 137(2):155–162

    Article  CAS  Google Scholar 

  • Liebens J (2002) Heavy metal contamination of sediments in stormwater management systems: the effect of land use, particle size, and age. Environ Geol 41(3–4):341–351

    Google Scholar 

  • Lucas R, Earl ER, Babatunde AO, Bockelmann-Evans BN (2015) Constructed wetlands for stormwater management in the UK: a concise review. Civil Eng Environ Syst 32(3):251–268

    Article  Google Scholar 

  • Luoma SN (1983) Bioavailability of trace metals to aquatic organisms—a review. Sci Total Environ 28:1–22

    Article  CAS  Google Scholar 

  • Mallin MA, Ensign SH, Wheeler TL, Mayes DB (2002) Pollutant removal efficacy of three wet detention ponds. J Environ Qual 31(2):654

    Google Scholar 

  • Mangangka IR, Liu A, Goonetilleke A, Egodawatta P (2016) Enhancing the storm water treatment performance of constructed wetlands and bioretention basins. SpringerBriefs in Water Science and Technology, Singapore. ISBN 978-981-10-1659-2

    Google Scholar 

  • Marsalek J, Marsalek PM (1997) Characteristics of sediments from a stormwater management pond. Water Sci Technol 36(8–9):117–122

    CAS  Google Scholar 

  • Marsalek J, Urbonas B, Lawrence I (2005) Stormwater management ponds. In: Shilton A (ed) Pond treatment technology. IWA Publishing, London

    Google Scholar 

  • Merriman LS, Hunt WF (2014) Maintenance versus maturation: constructed storm-water wetland’s fifth-year water quality and hydrologic assessment. J Environ Eng 140(10)

    Google Scholar 

  • Meyer D, Molle P, Esser D, Troesch S, Masi F, Tondera K, Pinnekamp J (2014) Constructed wetlands for combined sewer overflow treatment. Sustainable Sanit Pract 1(18):21–24

    Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands. Van Nostrand Reinhold, New York

    Google Scholar 

  • Molle P, Liénard A, Boutin C, Merlin G, Iwema A (2005) How to treat raw sewage with constructed wetlands: an overview of the French systems. Water Sci Technol 51:11–21

    CAS  Google Scholar 

  • Molle P, Liénard A, Grasmick A, Iwema A (2006) Effect of reeds and feeding operations on hydraulic behaviour of vertical flow constructed wetlands under hydraulic overloads. Water Res 40:606–612

    Article  CAS  Google Scholar 

  • Muthanna TM, Viklander M, Blecken GT, Thorolfsson ST (2007a) Snowmelt pollutant removal in bioretention areas. Water Res 41:4061–4072

    Article  CAS  Google Scholar 

  • Muthanna TM, Viklander M, Blecken GT, Thorolfsson ST (2007b) Snowmelt pollutant removal in bioretention areas. Water Res 41(18):4061–4072

    Article  CAS  Google Scholar 

  • Pavlineri N, Skoulikidis NT, Tsihrintzis VA (2017) Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chem Eng J 308:1120–1132

    Article  CAS  Google Scholar 

  • Pettersson TJR, German J, Svensson G (1999) Pollutant removal efficiency in two stormwater ponds in Sweden. Proc. 8th International Conference on Urban Storm Drainage, Vol 2. Sydney, Australia, 30 August–3 September, 1999, pp 866-873

    Google Scholar 

  • Prince George’s County (1993) Design manual for the use of bioretention in stormwater management. The Prince George’s County, Maryland, USA

    Google Scholar 

  • Roseen RM, Ballestero TP, Houle JJ, Avellaneda P, Briggs J, Fowler G, Wildey R (2009) Seasonal performance variations for storm-water management systems in cold climate conditions. J Environ Eng 135(3):128–137

    Article  CAS  Google Scholar 

  • Rousseau DPL, Horton D, Griffin P, Vanrolleghem PA, De Pauw N (2005) Impact of operational maintenance on the asset life of storm reed beds. Water Sci Technol 51:243–250

    CAS  Google Scholar 

  • Sansalone JJ, Buchberger SG (1997) Characterization of solid and metal element distribution in urban highway stormwater. Water Sci Technol 36(8–9):155–160

    CAS  Google Scholar 

  • Schueler T, Lane C, Wood D (2016) Recomendations of the expert panel to define removal rates for floating treatment wetlands in existing wet ponds. Final Report to the Chesapeake Stormwater Network. Sept 2016. http://chesapeakestormwater.net/bmp-resources/floating-treatment-wetlands/. Accessed 15 June 2017

  • Seidemann RW (1997) Untersuchungen zum Transport von gelösten Stoffen und Partikeln durch heterogene Porengrundwasserleiter (Evaluations of the transport of dissolved substances and particles through heterogeneous ground water layers). Dissertation, Forschungszentrum Jülich

    Google Scholar 

  • Shutes RBE, Revitt DM, Mungur AS, Scholes LNL (1997) The design of wetland systems for the treatment of urban run off. Water Sci Technol 35(5):19–25

    Google Scholar 

  • Søberg LC (2014) Metal pathways in stormwater treatment systems. Licentiate thesis, Luleå University of Technology

    Google Scholar 

  • Southichak B, Nakano K, Nomura M, Chiba N, Nishimura O (2006) Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution. Water Res 40:2295–2302

    Article  CAS  Google Scholar 

  • Starzec P, Lind BB, Lanngren A, Lindgren Å, Svenson T (2005) Technical and environmental functioning of detention ponds for the treatment of highway and road runoff. Water Air Soil Pollut 163(1–4):153–167

    Article  CAS  Google Scholar 

  • Strosnider WH, Schultz SE, Strosnider KAJ, Nairn RW (2017) Effects on the underlying water column by extensive floating treatment wetlands. J Environ Qual 46:201–209

    Article  CAS  Google Scholar 

  • Tanner CC (2001) Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Sci Technol 44(11–12):9–17

    CAS  Google Scholar 

  • Tao W, Bays J, Meyer D, Smardon R, Levy Z (2014) Constructed wetlands for treatment of combined sewer overflow in the US: a review of design challenges and application status. Water 6(11):3362–3385

    Google Scholar 

  • Tanner CC, Headley TR (2011) Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol Eng 37:474–486

    Article  Google Scholar 

  • Terzakis S, Fountoulakis MS, Georgaki I, Albantakis D, Sabathianakis I, Karathanasis AD, Kalogerakis N, Manios T (2008) Constructed wetlands treating highway runoff in the central Mediterranean region. Chemosphere 72(2):141–149

    Article  CAS  Google Scholar 

  • Van Buren MA, Watt WE, Marsalek J (1997) Removal of selected urban stormwater constituents by an on-stream pond. J Environ Plan Manage 40(1):5–18

    Article  Google Scholar 

  • Van de Moortel AMK, Laing GD, Pauw ND, Tack FMG (2011) Distribution and mobilization of pollutants in the sediment of a constructed floating wetland used for treatment of combined sewer overflow events. Water Environ Res 83(5):427–439

    Google Scholar 

  • VanLoon G, Anderson BC, Watt WE, Marsalek J (2000) Characterizing stormwater sediments for ecotoxic risk. Water Qual Res J Canada 35(3):341–364

    CAS  Google Scholar 

  • Vollertsen J, Åstebøl SO, Coward JE, Fageraas T, Nielsen AH, Hvitved-Jacobsen T (2009) Performance and modelling of a highway wet detention pond designed for cold climate. Water Qual Res J Canada 44(3):253–262

    Google Scholar 

  • Wang CY, Sample DJ (2013) Assessing floating treatment wetlands nutrient removal performance through a first order kinetics model and statistical inference. Ecol Eng 61(A):292–302

    Google Scholar 

  • Wang CY, Sample DJ, Bell C (2014) Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds. Sci Total Environ 499(1):384–393

    Article  CAS  Google Scholar 

  • Winston RJ, Hunt WF, Kennedy SG, Wright JD, Lauffer MS (2012) Field evaluation of storm-water control measures for highway runoff treatment. J Environ Eng 138(1):101–111

    Article  CAS  Google Scholar 

  • Winston RJ, Hunt WF, Kennedy SG, Merriman LS, Chandler J, Brown D (2013) Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecol Eng 54:254–265

    Article  Google Scholar 

  • Xanthopoulos C (1990) Niederschlagsbedingter Schmutzstoffeintrag in Kanalsysteme – erneute Bilanzierung aufgrund weitergehender Erfassung von Ereignissen (Precipitation driven pollution loads in sewer systems). In: Schadstoffe im Regenabfluß aus städtischen Gebieten. Schriftenreihe des Institutes für Siedlungswasserwirtschaft 58:115–146, University of Karlsruhe, Germany

    Google Scholar 

  • Yi QT, Lu WW, Yu JG, Kim YC (2010) Characteristics of nutrient retention in a stormwater wetland during dry and wet days. Water Sci Technol 61(6):1535–1545

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Tondera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tondera, K., Blecken, GT., Chazarenc, F., Lucke, T., Tanner, C.C. (2018). Treatment Techniques for Variable Flows. In: Tondera, K., Blecken, GT., Chazarenc, F., Tanner, C. (eds) Ecotechnologies for the Treatment of Variable Stormwater and Wastewater Flows. SpringerBriefs in Water Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70013-7_2

Download citation

Publish with us

Policies and ethics

Navigation