Transkingdom Signaling Systems Between Plant and Its Associated Beneficial Microbes in Relation to Plant Growth and Development

  • Chapter
  • First Online:
Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration

Abstract

The concept of plants being holobiont, suggesting a co-existence with their microbial symbionts has emerged only recently with increasing evidences, indicating the versatile role of plant associated microbes in the growth and development of a plant. Therefore plant is no longer considered a single entity but rather a metaorganism, a world of diverse interkingdom interactome. This has led researchers to focus on these associations, with a view to using them in agronomic interventions. Most of these microorganisms are either bacteria or fungi, residing in different parts of a plant, forming a mutualistic relationship with their host. They provide essential nutrients for the growth of plants and protect them against pathogens by acting as the plants’ very own army. They allow for a plant’s development even in the presence of pathogenic organisms, and also exert an effective role in rescuing plants from the detrimental effects of abiotic stressors. These microorganisms are therefore found to mitigate conditions non-conducive for plant growth. Plants in return, provide them with a secure habitat and adequate source of carbon in order for them to thrive. The interkingdom relationship has been found to be very systematic. Cross talk between the hosts and the benevolent guests is very specific, with particular signaling pathways giving advantage to some microorganisms over others, allowing for the creation of a specific niche. These signals that stimulate plant growth are a focus of intense biological research with more and more information being generated and our understanding of the role of a plant microbiome in overall plant health gradually becoming clearer. This chapter has focused on signaling strategies documented till date between microbes which have their own specific forte in and around a plant. An application of this knowledge would allow for the enhancement of crop production worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L et al (2014) The interkingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80:758–771

    CAS  PubMed  Google Scholar 

  • Balint-Kurti P, Simmons SJ, Blum JE, BallarĂ© CL, Stapleton AE (2010) Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection. Mol Plant Microbe Interact 23:473–484

    CAS  PubMed  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    CAS  PubMed  Google Scholar 

  • Behie S, Zelisko P, Bidochka M (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–1577

    CAS  PubMed  Google Scholar 

  • Brazelton JN, Pfeufer EE, Sweat TA, Gardener BBM, Coenen C (2008) 2, 4-Diacetylphloroglucinol alters plant root development. Mol Plant Microbe Interact 21:1349–1358

    CAS  PubMed  Google Scholar 

  • Brewin NJ (1998) Tissue and cell invasion by Rhizobium: the structure and development of infection threads and symbiosomes. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, pp 417–429

    Google Scholar 

  • Capoen W, Sun J, Wysham D, Otegui MS, Venkateshwaran M et al (2011) Nuclear membranes control symbiotic calcium signaling of legumes. Proc Natl Acad Sci USA 108:14348–14353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Johri BN, Prakash A (2008) Volatiles as priming agents that initiate plant growth and defence responses. Curr Sci 95:595–604

    Google Scholar 

  • D’Haeze W, Gao M, De Rycke R, Van Montagu M, Engler G, Holsters M (1998) Roles for azorhizobial Nod factors and surface polysaccharide in intercellular invasion and nodule penetration respectively. Mol Plant Microbe Interact 11:999–1008

    Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial siderophores. Springer, Berlin, Heidelberg, pp 1–42

    Google Scholar 

  • Denarie J, Debelle F, Prome J-C (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    CAS  PubMed  Google Scholar 

  • Dorokhov YL, Komarova TV, Petrunia IV, Frolova OY, Pozdyshev DV et al (2012) Airborne signals from a wounded leaf facilitate viral spreading and induce antibacterial resistance in neighboring plants. PLoS Pathog 8(4):e1002640

    CAS  PubMed  PubMed Central  Google Scholar 

  • FarrĂ©-Armengol G, Filella I, Llusia J, Peñuelas J (2016) Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci 21:854–860

    PubMed  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL et al (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46

    Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    CAS  PubMed  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS et al (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    PubMed  Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    CAS  PubMed  Google Scholar 

  • Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87:325–341

    PubMed  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L, Chen W-M, Elliott GN et al (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288

    CAS  PubMed  Google Scholar 

  • Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the Rhizosphere: insight and biotechnological potential. Open Microbiol J 31:1–7

    Google Scholar 

  • Hale MG, Moore LD, Griffin GJ (1978) Root exudates and exudation. In: Elsevier Dommergues YR, Krupa SV (eds) Interactions between non-pathogenic soil microorganisms and plants. Elsevier, Amsterdam, pp 163–203

    Google Scholar 

  • Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Microbial root endophytes. Springer, Berlin, pp 299–319

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    CAS  PubMed  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    CAS  PubMed  Google Scholar 

  • Hartmann A, Rothballer M, Hense BA, Schröder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131. https://doi.org/10.3389/fpls.2014.00131

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010) Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microbiol 76:8117–8125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, MĂ©traux J-P (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 6:851–858

    Google Scholar 

  • Jeremy DM, Donna RC, Kirsty JJ, Chengwu L (2013) Signaling at the root surface: the role of cutin monomers in mycorrhization. Mol Plant 6:1381–1383

    Google Scholar 

  • Journet EP, El-Gachtouli N, Vernoud V, De Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V (2001) Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant Microbe Interact 14:737–748

    CAS  PubMed  Google Scholar 

  • Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant-microbe interface. J Chem Ecol 39:810–825

    CAS  PubMed  Google Scholar 

  • Junker RR, Loewel C, Gross R, Dötterl S, Keller A et al (2011) Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol 13:918–924

    CAS  PubMed  Google Scholar 

  • Kniskern JM, Traw MB, Bergelson J (2007) Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Mol Plant Microbe Interact 20:1512–1522

    CAS  PubMed  Google Scholar 

  • Kouchi, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51(9):1381–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD et al (2010) Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22:973–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CE, Monier J-M (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    CAS  PubMed  Google Scholar 

  • Newton J, Fray R (2004) Integration of environmental and host derived signals with quorum sensing during plant–microbe interactions. Cell Microbiol 6:213–224

    CAS  PubMed  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    CAS  PubMed  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    CAS  PubMed  Google Scholar 

  • OrtĂ­z-Castro R, Contreras-Cornejo HA, MacĂ­as-RodrĂ­guez L, LĂłpez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    PubMed  PubMed Central  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E et al (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS One 5:e11915

    PubMed  PubMed Central  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    CAS  PubMed  Google Scholar 

  • Pirozynski K, Malloch D (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164

    CAS  PubMed  Google Scholar 

  • Plett JM, Martin F (2015) Reconsidering mutualistic plant–fungal interactions through the lens of effector biology. Curr Opin Plant Biol 26:45–50

    PubMed  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260

    Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, Cham, pp 1–7

    Google Scholar 

  • Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904

    CAS  PubMed  Google Scholar 

  • Roche P, DebellĂ© F, Maillet F, Lerouge P, Faucher C et al (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67:1131–1143

    CAS  PubMed  Google Scholar 

  • Rodriguez R, White J Jr, Arnold AE, Redman R (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    CAS  PubMed  Google Scholar 

  • Rosenblueth M, MartĂ­nez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    CAS  PubMed  Google Scholar 

  • Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83

    CAS  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y et al (1996) Systemic acquired resistance. Plant Cell 8:1809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M (2014) Shoot-derived cytokinins systemically regulate root nodulation. Nat Commun 5:4983. https://doi.org/10.1038/ncomms5983

    Article  CAS  PubMed  Google Scholar 

  • Schenk ST, Stein E, Kogel K-H, Schikora A (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav 7:178–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheres B, Van de Wiel C, Zalensky A, Horvath B, Spaink H, Van Eck H, Zwartkruis F, Wolters AM, Gloudemans T, Van Kammen A, Bisseling T (1990) The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell 60:281–294

    CAS  PubMed  Google Scholar 

  • Schulz B (2006) Mutualistic interactions with fungal root endophytes. In: Microbial root endophytes. Springer, Berlin, pp 261–279

    Google Scholar 

  • Smith D, Zhou X (2014) Preface. Can J Plant Sci 94:995–1008. https://doi.org/10.4141/cjps-2014-503

    Article  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    CAS  PubMed  Google Scholar 

  • Subramoni S, Gonzalez JF, Johnson A, PĂ©chy-Tarr M, Rochat L et al (2011) Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl Environ Microbiol 77:4579–4588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    CAS  PubMed  Google Scholar 

  • Thomas P, Sekhar AC (2014) Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria. AoB Plants 6:plu002

    PubMed  PubMed Central  Google Scholar 

  • Trivedi P, Pandey A (2008) Plant growth promotion abilities and formulation of Bacillus megaterium strain B 388 (MTCC6521) isolated from a temperate Himalayan location. Indian J Microbiol 48:342–347

    PubMed  Google Scholar 

  • van der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    PubMed  Google Scholar 

  • Velázquez E, Rojas M, Lorite MJ, Rivas R, Zurdo-Piñeiro JL et al (2008) Genetic diversity of endophytic bacteria which could be find in the apoplastic sap of the medullary parenchym of the stem of healthy sugarcane plants. J Basic Microbiol 48:118–124

    PubMed  Google Scholar 

  • Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37

    CAS  PubMed  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21:187–198

    CAS  PubMed  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–97

    Google Scholar 

  • Yehuda Z, Shenker M, Hadar Y, Chen Y (2000) Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin. J Plant Nutr 23:1991–2006

    CAS  Google Scholar 

  • Zambell CB, White JF (2015) In the forest vine Smilax rotundifolia, fungal epiphytes show site-wide spatial correlation, while endophytes show evidence of niche partitioning. Fungal Divers 75:279–297

    Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haseena Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferdous, A.S., Islam, M.R., Khan, H. (2017). Transkingdom Signaling Systems Between Plant and Its Associated Beneficial Microbes in Relation to Plant Growth and Development. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_24

Download citation

Publish with us

Policies and ethics

Navigation