Radar Aeroecology

  • Chapter
  • First Online:
Aeroecology

Abstract

Aeroecology takes an integrative approach across several scientific disciplines to help further our understanding of biological patterns and processes. The use of radar systems to observe and monitor the airborne animals individually, as small groups, or as large-scale collective ensembles provides one example of this modality. Radar systems scanning the atmosphere are primarily used to monitor weather conditions and track the location and movements of aircraft. However, radar echoes regularly contain signals from other sources, such as airborne birds, bats, and arthropods. We briefly discuss how radar observations can be and have been used to study a variety of airborne organisms and examine some of the many potential benefits likely to arise from radar aeroecology for meteorological and biological research over a wide range of spatial and temporal scales. We also provide a brief background covering the fundamentals of radar operations and signal processing followed by a summary of the various radar systems commonly used for aeroecology. Throughout the chapter, we provide examples of biological scatter as detected by radar and describe how these observations can be used to provide meaningful biological information. Radar systems are becoming increasingly sophisticated with the advent of innovative signal processing and polarimetric capabilities. These capabilities are being harnessed to both promote meteorological and aeroecological research and explore the interface between these two broad disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Able KP (1970) A radar study of the altitude of nocturnal passerine migration. Bird Band 41(4):282–290. https://doi.org/10.2307/4511688. http://www.jstor.org/stable/4511688

  • Alerstam T (1972) Nocturnal bird migration in Skane, Sweden, as recorded by radar in autumn 1971. Ornis Scand 3(2):141–151. https://doi.org/10.2307/3676221

    Article  Google Scholar 

  • Alerstam T (1990) Bird migration. Cambridge University Press, Cambridge

    Google Scholar 

  • Alerstam T, Bauer CA (1973) a radar study of the spring migration of the crane (Grus grus) over the southern Baltic area. Vogelwarte 27:1–16

    Google Scholar 

  • Alerstam T, Gudmundsson GA (1999) Migration patters of tundra birds: tracking radar observations along the northeast passage. Arctic 52(4):346–371. https://doi.org/10.14430/arctic941

    Article  Google Scholar 

  • Alerstam T, Gudmundsson GA, Green M, Hedenström A (2001) Migration along orthoromic sun compass routes by arctic birds. Science 291(5502):300–303. https://doi.org/10.1126/science.291.5502.300

    Article  CAS  PubMed  Google Scholar 

  • Alerstam T, Chapman JW, Bäckman J, Smith AD, Karlsson H, Nilsson C, Reynolds DR, Klaassen RHG, Hill JK (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc R Soc B. https://doi.org/10.1098/rspb.2011.0058

  • Al-Sakka H, Boumahmoud AA, Fradon B, Frasier SJ, Tabary P (2013) A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars. J Appl Meteorol Climatol 52(10):2328–2344. https://doi.org/10.1175/JAMC-D-12-0236.1

    Article  Google Scholar 

  • Atlas D (1959) Radar studies of meteorological “angel” echoes. J Atmos Sol Terr Phys 15:262–287

    Article  Google Scholar 

  • Bachmann S, Zrnić DS (2007) Spectral density of polarimetric variables separating biological scatterers in the VAD display. J Atmos Oceanic Tech 24:1186–1198

    Article  Google Scholar 

  • Battan LJ (1973) Radar observations of the atmosphere. University of Chicago Presss, Chicago, IL

    Google Scholar 

  • Bean BR, Dutton EJ (1966) Radar meteorology. U.S. Govt Printing Office, Washington, DC, p 431

    Google Scholar 

  • Bell JR, Aralimarad P, Lim KS, Chapman JW (2013) Predicting insect migration density and speed in the daytime convective boundary layer. PLoS One 8(1):1–9. https://doi.org/10.1371/journal.pone.0054202

    Article  CAS  Google Scholar 

  • Blacksmith P Jr, Mack RB (1965) On measuring the radar cross sections of ducks and chickens. Proc IEEE 53(8):1125

    Article  Google Scholar 

  • Bohren CF, Clothiaux EE (2006) Fundamentals of atmospheric radiation. Wiley, Weinheim

    Book  Google Scholar 

  • Bonter DN, Gauthreaux SA Jr, Donovan TM (2009) Characteristics of important stopover locations for migrating birds: remote sensing with radar in the Great Lakes basin. Conserv Biol 23:440–448

    Article  PubMed  Google Scholar 

  • Bridge ES, Pletschet SM, Fagin T, Chilson PB, Horton KG, Broadfoot KR, Kelly JF (2016) Persistence and habitat associations of Purple martin roosts quantified via weather surveillance radar. Landsc Ecol 31(1):43–53

    Article  Google Scholar 

  • Bruderer B (1969) Zur registrierung und interpretation von echosignaturen an einem 3-cm-zielverfolgungsradar. Der Ornithologologische Beobachter 66:70–88

    Google Scholar 

  • Bruderer B (1994) Nocturnal bird migration in the Negev (Israel) – a tracking radar study. Ostrich 65(2):204–212

    Article  Google Scholar 

  • Bruderer B (1997a) The study of bird migration by radar Part 1: the technical basis. Naturwissenschaften 84:1–8

    Article  CAS  Google Scholar 

  • Bruderer B (1997b) The study of bird migration by radar Part 2: major achievements. Naturwissenschaften 84:45–54

    Article  CAS  Google Scholar 

  • Bruderer B (1999) Three decades of tracking radar studies on bird migration in Europe and the Middle East. In: Leshem Y, Mandelik Y, Shamoun-Baranes J (eds) Proceedings international seminar on birds and flight safety in the Middle East, pp 107–142

    Google Scholar 

  • Bruderer B, Steidinger P (1972) Methods of quantitative and qualitative analysis of bird migration with a tracking radar. In: Galler SR, Schmidt-Koenig K, Slotow R (eds) Animal orientation and navigation. National Aeronautic and Space Administration, Washington, DC, pp 151–167

    Google Scholar 

  • Bruderer B, Peter D, Boldt A, Liechti F (2010) Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis 152:272–291

    Article  Google Scholar 

  • Buderi R (1996) The invention that changed the world: how a small group of radar pioneers won the second world war and launched a technological revolution, Sloan technology series. Simon and Schuster, New York

    Google Scholar 

  • Buler JJ, Dawson DK (2014) Radar analysis of fall bird migration stopover sites in the northeastern U.S. Condor 116(3):357–370. https://doi.org/10.1650/CONDOR-13-162.1

    Article  Google Scholar 

  • Buler JJ, Diehl RH (2009) Quantifying bird density during migratory stopover using weather surveillance radar. IEEE Trans Geosci Remote Sens 47(8):2741–2751

    Article  Google Scholar 

  • Cabrera-Cruz SA, Mabee TJ, Patraca RV (2013) Using theoretical flight speeds to discriminate birds from insects in radar studies. Condor 115(2):263–272. https://doi.org/10.1525/cond.2013.110181. http://www.jstor.org/stable/10.1525/cond.2013.110181

  • Chadwick RB, Gossard EE (1983) Radar remote sensing of the clear atmosphere – review and applications. Proc IEEE 71(6):738–753. https://doi.org/10.1109/PROC.1983.12661

    Article  Google Scholar 

  • Chandrasekar V, Keränen R, Lim S, Moisseev D (2013) Recent advances in classification of observations from dual polarization weather radars. Atmos Res 119:97–111. https://doi.org/10.1016/j.atmosres.2011.08.014

    Article  Google Scholar 

  • Chapman JW, Reynolds DR, Smith AD (2003) Vertical-looking radar: a new tool for monitoring high-altitude insect migration. Bioscience 53(5):503–511. https://doi.org/10.1641/0006-3568(2003)053[0503:VRANTF]2.0.CO;2. http://bioscience.oxfordjournals.org/content/53/5/503.full

  • Chapman JW, Drake VA, Reynolds DR (2011) Recent insights from radar studies of insect flight. Annu Rev Entomol 56:337–356

    Article  CAS  PubMed  Google Scholar 

  • Chilson PB, Frick WF, Kelly JF, Howard KW, Larkin RP, Diehl RH, Westrook JK, Kelly TA, Kunz TH (2012a) Partly cloudy with a chance of migration: weather, radars, and aeroecology. Bull Am Meteorol Soc 93(5):669–686. https://doi.org/10.1175/BAMS-D-11-00099.1

    Article  Google Scholar 

  • Chilson PB, Frick WF, Stepanian PM, Shipley JR, Kunz TH, Kelly JF (2012b) Estimating animal densities in the aerosphere using weather radar: to Z or not to Z? Ecosphere 3(8). https://doi.org/10.1890/ES12-00027.1

  • Conant J (2003) Tuxedo Park: a Wall Street Tycoon and The Secret Palace of science that changed the course of world war II. Simon and Schuster, New York

    Google Scholar 

  • Contreras RF, Frasier SJ (2008) High-resolution observations of insects in the atmospheric boundary layer. J Atmos Oceanic Tech 25(12):2176–2187. https://doi.org/10.1175/2008JTECHA1059.1

    Article  Google Scholar 

  • Cooper BA, Day RH, Ritchie RJ, Cranor CL (1991) An improved marine radar system for studies of bird migration. J Field Ornithol 62:367–377

    Google Scholar 

  • Cooper BA, Raphael MG, Mack DE (2001) Radar-based monitoring of marbled murrelets. Condor 103(2):219–229

    Article  Google Scholar 

  • Crawford AB (1949) Radar reflections in the lower atmosphere. Proc IRE 37:404–405

    Article  Google Scholar 

  • Diehl RH (2013) The airspace is habitat. Trends Ecolol Evol 28(7):377–379. https://doi.org/10.1016/j.tree.2013.02.015

    Article  Google Scholar 

  • Diehl RH, Larkin RP, Black JE (2003) Radar observations of bird migration over the Great Lakes. Auk 120(2):278–290

    Article  Google Scholar 

  • Dinevich L, Matsyura A, Leshem Y (2003) Temoporal characteristics of night bird migration above central Irael – a radar study. Acta Ornithol 38(2):103–110. https://doi.org/10.3161/068.038.0206

    Article  Google Scholar 

  • Dokter AM, Liechti F, Stark H, Delobbe L, Tabary P, Holleman I (2011) Bird migration flight altitudes studied by a network of operational weather radars. J R Soc Interface 8(54):30–43. https://doi.org/10.1098/rsif.2010.0116

    Article  PubMed  Google Scholar 

  • Dokter AM, Åkesson S, Beekhuis H, Bouten W, Buurma L, van Gasteren H, Holleman I (2013a) Twilight ascents of common swits, Apus apus, at dwan and dusk: acquisition of orientation cues. Anim Behav 85(3):545–552. https://doi.org/10.1016/j.anbehav.2012.12.006

    Article  Google Scholar 

  • Dokter AM, Shamoun-Baranes J, Kemp MU, Tijm S, Holleman I (2013b) High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance. PLoS One 8(1):1–8. https://doi.org/10.1371/journal.pone.0052300

    Article  CAS  Google Scholar 

  • Doren BMV, Sheldon D, Geevarghese J, Hochachka WM, Farnsworth A (2015) Autumn morning flights of migrant songbirds in the northeastern United States are linked to nocturnal migration and winds aloft. Auk 132(1):105–118. https://doi.org/10.1642/AUK-13-260.1

    Article  Google Scholar 

  • Doviak RJ, Zrnić DS (1993) Doppler radar and weather observations, 2nd edn. Dover Publications, New York

    Google Scholar 

  • Drake VA, Reynolds DR (2012) Radar entomology. Centre for Agriculture and Biosciences International

    Google Scholar 

  • Eastwood E (1967) Radar ornithology. Methuen & Co. Ltd, London

    Google Scholar 

  • Eastwood E, Rider GC (1966) Grou** of nocturnal migrants. Nature 211:1143–1146

    Article  Google Scholar 

  • Edwards J, Houghton EW (1959) Radar echoing area polar diagram of birds. Nature 184:1059

    Article  Google Scholar 

  • Frick WF, Stepanian PM, Kelly JF, Howard KW, Kuster CK, Kunz TH, Chilson PB (2012) Climate and weather impact timing of emergence in bats. PLoS One 7(8). https://doi.org/10.1371/journal.pone.0042737

  • Gauthreaux SA Jr (1970) Weather radar quantification of bird migration. Bioscience 20:17–20

    Article  Google Scholar 

  • Gauthreaux SA Jr (1971) A radar and direct visual study fo passerine spring migration in southern Louisiana. Auk 88:343–365

    Article  Google Scholar 

  • Gauthreaux SA Jr (1991) The flight behavior of migrating birds in changing wind fields: radar and visual analysis. Am Zool 31(1):187–204. https://doi.org/10.1093/icb/31.1.187

    Article  Google Scholar 

  • Gauthreaux SA Jr, Belser CG (1998) Displays of bird movements on the WSR-88D: patterns and quantification. Weather Forecast 13:453–464

    Article  Google Scholar 

  • Gauthreaux SA Jr, Livingston JW (2006) Monitoring bird migration with a fixed-beam radar and a thermal imaging camera. J Field Ornithol 77(3):319–328

    Article  Google Scholar 

  • Gauthreaux SA Jr, Livingston JW, Belser CG (2008) Detection and discrimination of fauna in the aerosphere using Doppler weather surveillance radar. Int Comp Biol 48(1):12–23

    Article  Google Scholar 

  • Glover KM, Hardy KR, Sullivan TGKWN, Michaels AS (1966) Radar observations of insects in free flight. Science 154:967–972

    Article  CAS  PubMed  Google Scholar 

  • Harmata AR, Leighty GR, O’Neil EL (2003) A vehicle-mounted radar for dual-purpose monitoring of birds. Wildl Soc Bul 31(3):882–886

    Google Scholar 

  • Haykin S, Stehwien W, Deng C, Weber P, Mann R (1991) Classification of radar clutter in an air traffic control environment. Proc IEEE 79(6):742–772

    Article  Google Scholar 

  • Hedenström A, Alerstam T, Bächman J, Gudmundsson GA, Henningsson S, Kalrsson H, Rosen M, Strandberg R (2009) Radar observations of arctic bird migration in the Beringia region. Arctic 62(1):25–37. http://www.jstor.org/stable/40513262

  • Horn JW, Kunz TH (2008) Analyzing NEXRAD Doppler radar images to assess nightly dispersal patterns and population trends in Brazilian free-tailed bats (Tadarida brasiliensis). Int Comp Biol 48:24–39

    Article  Google Scholar 

  • Horton KG, Doren BMV, Stepanian PM, Hochachka WM, Farnsworth A, Kelly JF (2016) Nocturnally migrating songbirds drift when they can and compensate when they must. Sci Rep 6:21249. https://doi.org/10.1038/srep21249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hüppop O, Dierschke J, Exo KM, Fredrich E, Hill R (2006) Bird migration studies and potential collision risk with offshore wind turbines. Ibis 148:90–109. https://doi.org/10.1111/j.1474-919X.2006.00536.x

    Article  Google Scholar 

  • Kelly JF, Shipley JR, Chilson PB, Howard KW, Frick WF, Kunz TH (2012) Quantifying animal phenology in the continental scale using NEXRAD weather radars. Ecosphere 3(32). https://doi.org/10.1890/ES11–00,257.1

  • Kocurek W, LaGrone A (1967) Radar cross-section of a meteorological model of a coherent-dot radar angel. J Atmos Sol Terr Phys 29(8):975–985. https://doi.org/10.1016/0021-9169(67)90246-2. http://www.sciencedirect.com/science/article/pii/0021916967902462

  • Konrad TG, Hicks JJ, Dobson EB (1968) Radar characteristics of birds in flight. Science 159:274–280

    Article  CAS  PubMed  Google Scholar 

  • Lack D, Varley GC (1945) Detection of birds by radar. Nature 156:446–446

    Article  Google Scholar 

  • Lakshmanan V, Zhang J, Howard K (2010) A technique to censor biological echoes in radar reflectivity data. J Appl Meteorol Climatol 49(3):435–462

    Article  Google Scholar 

  • Lang TJ, Rutledge SA (2004) Observations of quasi-symmetric echo patterns in clear air with the CSU-CHILL polarimetric radar. J Atmos Oceanic Tech 21(8):1182–1189. https://doi.org/10.1175/1520-0426(2004)021<1182:OOQEPI>2.0.CO;2

    Article  Google Scholar 

  • Larkin RP (1980) Transoceanic bird migration: evidence for detection of wind direction. Behav Ecol Sociobiol 6(3):229–232. http://www.jstor.org/stable/4599283

  • Larkin RP, Diehl RH (2012) Radar techniques for wildlife biology. In: Silvy N (ed) The wildlife techniques manual: research, vol 1, 7th edn. The Wildlife Society, Baltimore, MD, pp 320–335

    Google Scholar 

  • Larkin RP, Evans WR, Diehl RH (2002) Nocturnal flight calls of dickcissels and Doppler radar echoes over south Texas in spring. J Field Ornithol 73(1):2–8

    Article  Google Scholar 

  • Lhermite RM (1966) Probing air motion by Doppler analysis of radar clear air returns. J Atmos Sci 23:575–591

    Article  Google Scholar 

  • Liechti F, Bruderer B, Paproth H (1995) Quantification of nocturnal bird migration by moonwatching – comparison with radar and infrared observations. J Field Ornithol 66(4):457–652

    Google Scholar 

  • Luke EP, Kollias P, Johnson KL, Clothiaux EE (2008) A technique for the automatic detection of insect clutter in cloud returns. J Atmos Oceanic Tech 25(9):1498–1513

    Article  Google Scholar 

  • Martin WJ, Shapiro A (2007) Discrimination of bird and insect radar echoes in clear air using high-resolution radars. J Atmos Oceanic Tech 24:1215–1230

    Article  Google Scholar 

  • Martinson LW (1973) A preliminary investigation of bird classification by doppler radar. Technical report NASA-CR-137457, National Aeronautic and Space Adminsitration, USA

    Google Scholar 

  • Martner BE, Moran KP (2001) Using cloud radar polarization measurements to evaluate stratus cloud and insect echoes. J Geophys Res Atmos 106(D5):4891–4897. https://doi.org/10.1029/2000JD900623

    Article  Google Scholar 

  • Melnikov VM, Lee RR, Langlieb NJ (2012) Resonance effects within S-band in echoes from birds. IEEE Geosci Remote Sens Lett 9(3):413–416. https://doi.org/10.1109/LGRS.2011.2169933

    Article  Google Scholar 

  • Melnikov V, Leskinen M, Koistinen J (2014) Doppler velocities at orthogonal polarizations in radar echoes from insects and birds. IEEE Geosci Remote Sens Lett 11(3):592–596. https://doi.org/10.1109/LGRS.2013.2272011

    Article  Google Scholar 

  • Melnikov VM, Istok MJ, Westbrook JK (2015) Asymmetric radar echo patterns from insects. J Atmos Oceanic Tech 32(4):659–674. https://doi.org/10.1175/JTECH-D-13-00247.1. http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-13-00247.1

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Geophys 25(3):377–445

    CAS  Google Scholar 

  • Mirkovic D, Stepainan PM, Kelly JF, Chilson PB (2016) Electromagnetic model reliably predicts radar scattering characteristics of airborne organisms. Nat Sci Rep 6:1–11. https://doi.org/10.1038/srep35637

    Article  CAS  Google Scholar 

  • Mueller EA, Larkin RP (1985) Insects observed using dual-polarization radar. J Atmos Oceanic Tech 2:49–54

    Article  Google Scholar 

  • Nebuloni R, Capsoni C, Vigorita V (2008) Quantifying bird migration by a high-resolution weather radar. IEEE Trans 46(6):1867–1875

    Google Scholar 

  • Nohara TJ, Eng B, Eng M, Weber P, Ukrainec A, Premji A, Jones G (2007) An overview of avian radar development – past, present and future. In: 2007 Bird Strike Committee – USA/Canada, 9th annual meeting, Kingston, Ontario, pp 1–8

    Google Scholar 

  • Nohara TJ, Beason RC, Weber P (2011) Using radar cross-section to enhance situational awareness tools for airport avian radars. Hum Wildl Interact 5(2):210–217

    Google Scholar 

  • O’Neal BJ, Stafford JD, Larkin RP (2015) Migrating ducks in inland North America ignore rivers as leading lines. Ibis 57(1):154–161. https://doi.org/10.1111/ibi.12193

    Article  Google Scholar 

  • Park HS, Ryzhkov AV, Zrnić DS, Kim KE (2009) The hydrometeor classification algorithm for the polarimetric WSR-88D: description and application to an MCS. Weather Forecast 24(3):730–748. https://doi.org/10.1175/2008WAF2222205.1

    Article  Google Scholar 

  • Plank VG (1956) A meteorological study of radar angels. Geophysical research papers, U.S. Department of Commerce, Office of Technical Services

    Google Scholar 

  • Plonczkier P, Simms I (2012) Radar monitoring of migrating pink-footed geese: behavioural responses to offshore wind farm development. J Appl Ecol 49(5):1187–1194. https://doi.org/10.1111/j.1365-2664.2012.02181.x

    Article  Google Scholar 

  • Probert-Jones JR (1962) The radar equation in meteorlogy. Q J R Meteorol Soc 88(378):485–495

    Article  Google Scholar 

  • Richter JH, Jensen DR (1973) Radar cross-section measurements of insects. Proc IEEE 61:1176–1178

    Google Scholar 

  • Richter JH, Jesnen DR, Noonkester VR, Breasky JB, Stimmann MW, Wolf WW (1973) Remote radar sensing: atmospheric structure and insects. Science 180:1176–1178. https://doi.org/10.1126/science.180.4091.1176

    Article  CAS  PubMed  Google Scholar 

  • Riley JR (1985) Radar cross sections of insects. Proc IEEE 73(2):228–232

    Article  Google Scholar 

  • Riley JR, Reynolds DR (1990) Nocturnal grasshopper migration in West Africa. Philos Trans R Soc B 328:655–672

    Article  Google Scholar 

  • Rinehart RE (2010) Radar for meteorologists, 5th edn. Rinehart Publications, Columbia, MO

    Google Scholar 

  • Russell KR, Gauthreaux SA Jr (1998) Use of weather radar to characterize movements of roosting purple martins. Wildl Soc Bul 26(1):5–16

    Google Scholar 

  • Russell RW, Wilson JW (1997) Radar-observed “fine lines” in the optically clear boundary layer: reflectivity contributions from aerial plankton and its predators. Bound Lay Meteorol 83:235–262

    Article  Google Scholar 

  • Ryzhkov AV, Zrnić DS (2007) Depolarization in ice crystals and its effect on radar polarimetric measurements. J Atmos Oceanic Tech 24(7):1256–1267. https://doi.org/10.1175/JTECH2034.1

    Article  Google Scholar 

  • Schaefer GW (1968) Bird recognition by radar: a study in quantitative radar ornithology. In: Murton RK, Wright EN (eds) The problems of birds as pests. Academic Press, London, New York, pp 53–86

    Chapter  Google Scholar 

  • Schmaljohan H, Liechti F, Bächler E, Steuri T, Bruderer B (2008) Quantification of bird migration by radar – a detection probability problem. Ibis 150:342–355

    Article  Google Scholar 

  • Shamoun-Baranes J, Bouten W, van Loon EE (2010) Integrating meteorology into research on migration. Int Comp Biol. https://doi.org/10.1093/icb/icq011:1–13

  • Shamoun-Baranes J, Dokter AM, van Gasteren H, van Loon EE, Leijnse H, Bouten W (2011) Birds flee en mass from New Year’s Eve fireworks. Behav Ecol. https://doi.org/10.1093/beheco/arr102:1–5

  • Shamoun-Baranes J, Alves JA, Bauer S, Dokter AM, Hüppop O, Koistinen J, Leijnse H, Liechti F, van Gasteren H, Chapman JW (2014) Continental-scale radar monitoring of the aerial movements of animals. Movement Ecol 2:9

    Article  Google Scholar 

  • Shamoun-Baranes J, Farnsworth A, Aelterman B, Alves JA, Azijn K, Bernstein G, Branco S, Desmet P, Dokter AM, Horton K, Kelling S, Kelly JF, Leijnse H, Rong J, Sheldon D, den Broeck WV, Meersche JKVD, Doren BMV, van Gasteren H (2016) Innovative visualizations shed light on avian nocturnal migration. PLoS One 11(8):e0160106. https://doi.org/10.1371/journal.pone.0160106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stepanian PM, Horton KG (2015) Extracting migrant flight orientation profiles using polarimetric radar. IEEE Tran Geosci Remote Sens 53(12):6518–6528. https://doi.org/10.1109/TGRS.2015.2443131

    Article  Google Scholar 

  • Stepanian PM, Chilson PB, Kelly JF (2014) An introduction to radar image processing in ecology. Methods Ecol Evol 5:730–738. https://doi.org/10.1111/2041-210X.12214

    Article  Google Scholar 

  • Taylor PD, Brzustowski JM, Matkovich C, Peckford ML, Wilson D (2010) radR: an open-source platform for acquiring and analysing data on biological targets observed by surveillance radar. BMC Ecol 10(22):1–8. https://doi.org/10.1186/1472-6785-10-22

    Google Scholar 

  • Tolbert C, Straiton A, Britt C (1958) Phantom radar targets at millimeter radio wavelengths. IRE Trans Antennas Propag 6(4):380–384. https://doi.org/10.1109/TAP.1958.1144609

    Article  Google Scholar 

  • Van Den Broeke MS (2013) Polarimetric radar observations of biological scatterers in Hurricane Irene (2011) and Sandy (2012). J Atmos Oceanic Tech 30(12):2754–2767. https://doi.org/10.1175/JTECH-D-13-00056.1

    Article  Google Scholar 

  • van Gasteren H, Holleman I, Bouten W, van Loon E, Shamoun-Baranes J (2008) Extracting bird migration information from C-band Doppler weather radars. Ibis 150:674–686

    Article  Google Scholar 

  • Vaughn CR (1974) Intraspecific wingbeat rate variability and species identification using tracking radar. In: Gauthreaux SA Jr (ed) Proceedings of a conference on the biological aspects of the bird/aircraft collision problem, Department of Zoology, Clemson University, Clemson, SC, pp 443–476

    Google Scholar 

  • Westbrook JK (2008) Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Int Comp Biol 48(1):99–106

    Article  Google Scholar 

  • Wilczak JM, Strauch RG, Martin FM, Weber BL, Meritt DA, Jordan JR, Wolfe DE, Lewis LK, Wuertz DB, Gaynor JE, McLaughlin SA, Rogers RR, Riddle AC, Dye TS (1995) Contamination of wind profiler data by migrating birds: characteristics of corrupted data and potential solutions. J Atmos Oceanic Tech 12(3):449–467

    Article  Google Scholar 

  • Williams TC, Williams JM (1980) A Pertson’s guide to radar ornithology? Am Birds 34:738–739

    Google Scholar 

  • Williams TC, Settel J, O’Mahoney P, Williams JM (1972) An ornithological radar. Am Birds 26:555–557

    Google Scholar 

  • Zakrajsek EJ, Bissonette JA (2001) Nocturnal bird-avoidance modeling with mobile-marine radar. In: Bird Strike Committee – USA/Canada, third joint annual meeting, Calgary, AB, pp 185–194

    Google Scholar 

  • Zaugg S, Saporta G, van Loon E, Schmaljohann H, Liechti F (2008) Automatic identification of bird targets with radar via patterns produced by wing flap**. J R Soc Interface 5(26):1041–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Liu S, Xu Q (2005) Identifying Doppler velocity contamination caused by migraging birds. Part I: feature extraction and quantification. J Atmos Oceanic Tech 22(8):1105–1113. https://doi.org/10.1175/JTECH1757.1

    Article  Google Scholar 

  • Zrnić DS, Ryzhkov AV (1998) Observations of insects and birds with polarimetric radar. IEEE Trans Geosci Remote Sens 36(2):661–668

    Article  Google Scholar 

Download references

Acknowledgements

Research presented in this chapter was funded in part by the National Science Foundation (Award # 1340921 from Macrosystems Biology) and the US Department of Agriculture National Institute of Food and Agriculture (NIFA-AFRI-003536). PBC is grateful to the support and accommodations from the Swiss Ornithological Institute during his sabbatical leave, which facilitated work on the chapter. Moreover, PBC acknowledges travel support from the European Network for the Radar surveillance of Animal Movement (ENRAM) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip B. Chilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chilson, P.B., Stepanian, P.M., Kelly, J.F. (2017). Radar Aeroecology. In: Chilson, P., Frick, W., Kelly, J., Liechti, F. (eds) Aeroecology. Springer, Cham. https://doi.org/10.1007/978-3-319-68576-2_12

Download citation

Publish with us

Policies and ethics

Navigation