Neogene Growth of the Patagonian Andes

  • Chapter
  • First Online:
The Evolution of the Chilean-Argentinean Andes

Abstract

After a Late Cretaceous to Paleocene stage of mountain building, the North Patagonian Andes were extensionally reactivated leading to a period of crustal attenuation. The result was the marine Traiguén Basin characterized by submarine volcanism and deep-marine sedimentation over a quasi-oceanic basement floor that spread between 27 and 22 Ma and closed by 20 Ma, age of syndeformational granitoids that cut the basin infill. As a result of basin closure, accretion of the Upper Triassic metamorphic Chonos Archipelago took place against the Chilean margin, overthrusting a stripe of high-density (mafic) rocks on the upper crust, traced by gravity data through the Chonos Archipiélago. After this, contractional deformation had a rapid propagation between 19 and 14.8 Ma rebuilding the Patagonian Andes and producing a wide broken foreland zone. This rapid advance of the deformational front, registered in synorogenic sedimentation, was accompanied at the latitudes of the North Patagonian Andes by an expansion of the arc magmatism between 19 and 14 Ma, suggesting a change in the subduction geometry at that time. Then a sudden retraction of the contractional activity took place around 13.5–11.3 Ma, accompanied by a retraction of magmatism and an extensional reactivation of the Andean zone that controlled retroarc volcanism up to 7.3–(4.6?) Ma. This particular evolution is explained by a shallow subduction regime in the northernmost Patagonian Andes, probably facilitated by the presence of the North Patagonian massif lithospheric anchor that would have blocked drag basal forces creating low-pressure conditions for slab shallowing. Contrastingly, to the south, the accretion of the Chonos Archipelago explains rapid propagation of the deformation across the retroarc zone. These processes occurred at the time of rather orthogonal to the margin convergence between Nazca and South American plates after a long period of high oblique convergence. Finally, convergence deceleration in the last 10 My could have led to extensional relaxation of the orogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 123.04
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez O, Gimenez ME, Braitenberg C, Folguera A (2012) GOCE satellite derived gravity and gravity gradient corrected for topographic Effect in the South Central Andes region. Geophys J Int 190:941–959. https://doi.org/10.1111/j.1365-246X.2012.05556.x

    Article  Google Scholar 

  • Alvarez O, Gimenez ME, Braitenberg C (2013) Nueva metodología para el cálculo del efecto topográfico para la corrección de datos satelitales. Rev Asoc Geol Argent 70:422–429

    Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center. Biblioteca Digital ILCE 1, p 19

    Google Scholar 

  • Aragón E, Castro A, Díaz-Alvarado J, Liu DY (2011) The North Patagonian batholith at Paso Puyehue (Argentina-Chile). SHRIMP ages and compositional features. J South Am Earth Sci 32:547–554

    Article  Google Scholar 

  • Bechis F, Encinas A, Concheyro A, Litvak V, Aguirre-Urreta B, Ramos VA (2014) New age constraints for the Cenozoic marine transgressions of northwestern Patagonia, Argentina (41°–43° S): Paleogeographic and tectonic implications. J South Am Earth Sci 52:72–93

    Article  Google Scholar 

  • Bilmes A, D’Elia L, Franzese J, Veiga G, Hernández M (2013) Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina. Tectonophysics 601:98–111

    Article  Google Scholar 

  • Bissig T, Clark AH, Lee JKW, von Quadt, (2003) Petrogenetic and metallogenetic responses to miocene slab flattenig: New constrains from the El Indio-Pascua Au-Ag-Cu Belt, Chile/Argentina. Mineralium Deposita 38: 844–862

    Google Scholar 

  • Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the Southern Chile Trench. J Geophys Res 91:471–496

    Article  Google Scholar 

  • Bouman J, Ebbing J, Fuchs M (2013) Reference frame transformation of satellite gravity gradients and topographic mass reduction. J Geophys Res: Solid Earth 118:759–774. https://doi.org/10.1029/2012JB009747

    Article  Google Scholar 

  • Braitenberg C, Ebbing J, Gotze H (2002) Inverse modelling of elastic thickness by convolution method the Eastern Alps as a case example. Earth Planet Sci Lett 202:387–404

    Article  Google Scholar 

  • Braitenberg C, Mariani P, Ebbing J, Sprlak M (2011) The enigmatic Chad lineament revisited with global gravity and gravity gradient fields. In: van Hinsbergen DJJ, Buiter S, Torsvik TH, Gaina C, Webb S (eds) The Formation and Evolution of Africa: A Synopsis of 3.8 Ga of Earth History. Geological Society of London 357, London, pp 329–343

    Google Scholar 

  • Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66

    Article  Google Scholar 

  • Echaurren A, Folguera A, Gianni G, Orts D, Tassara A, Encinas A, Giménez M, Valencia V (2016) Tectonic evolution of the North Patagonian Andes (41°–44° S) through recognition of syntectonic strata. Tectonophysics 677:99–114. https://doi.org/10.1016/j.tecto.2016.04.009

    Article  Google Scholar 

  • Encinas A, Folguera A, Oliveros V, del Mauro L, Tapia F, Riffo R, Hervé F, Finger K, Valencia V, Gianni G, Álvarez O (2015) Late Oligocene-Early Miocene submarine volcanism and deep-marine sedimentation in an extensional basin of southern Chile. Implications on the tectonic development of the North Patagonian Andes. Geol Soc Am Bulletin 128:807–823

    Article  Google Scholar 

  • Espinoza F, Morata D, Polve M, Lagabrielle Y, Maury R, De la Rupelle A, Guivel C, Cotten J, Bellon H, Suarez M (2010) Volcanismo calcoalcalino durante el Mioceno Medio en Patogonia Central (47° S): petrogenesis e implicaciones en la dinamica de placas. Andean Geol 37:300–328

    Google Scholar 

  • Feruglio E (1947) Descripción Geológica de la Hoja 40b, San Carlos de Bariloche, Río Negro, Carta Geológico-Económica de la República Argentina, escala 1:200,000. Dirección Nacional de Geología y Minería, Buenos Aires, Argentina

    Google Scholar 

  • Flynn J, Novacek M, Dodson H, Frassinetti D, Mc Kenna M, Norell M, Sears K, Swisher C, Wuss A (2002) A new fossil mammal assemblage from the southern Chilean Andes: implications for geology, geochronology, and tectonics. J South Am Earth Sci 15:285–302

    Article  Google Scholar 

  • García-Sansegundo J, Farias P, Gallastegui G, Giacosa RE, Heredia N (2009) Structure and metamorphism of the Gondwanan basement in the Bariloche region (North Patagonian Argentine Andes). Int J Earth Sci 98:1599–1608

    Article  Google Scholar 

  • Giacosa R, Heredia N (2004) Structure of the North Patagonian thick-skinned fold-and-thrust belt, southern central Andes, Argentina (41°–42° S). J South Am Earth Sci 18:61–72

    Article  Google Scholar 

  • Gianni G, Navarrete C, Orts D, Tobal J, Folguera A, Giménez M (2015a) Patagonian broken foreland and related impactogene: The origin of the Chubut Basin. Tectonophysics 649:81–99

    Article  Google Scholar 

  • Gianni G, Folguera A, Navarrete C, Encinas A, Echaurren A (2015b) The North Patagonian orogen: Meso-Cenozoic evolution from the Andes to the foreland area. In: Folguera A, Naipauer M, Sagripanti L, Ghiglione M, Orts D, Giambiagi L (eds) Growth of the Southern Andes. Springer International Publishing, pp 173–200

    Google Scholar 

  • Gordon A, Ort MH (1993) Edad y correlación del plutonismo subcordillerano en la provincias de Río Negro y Chubut (41°–42°30′ L.S.). In: Ramos VA (ed) Geología y Recursos Naturales de la Provincia de Mendoza. Mendoza, Relatorio del XII Congreso Geológico Argentino, pp 120–127

    Google Scholar 

  • Grombein T, Heck B, Seitz K (2013) Optimized formulas for the gravitational field of a tesseroid. J Geod 87:645–600

    Article  Google Scholar 

  • Gutscher M-A, Spakman W, Bijwaard H, Engdahl ER (2000) Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics 19. https://doi.org/10.1029/1999TC001152

  • Haller M, Pécskay Z, Németh K, Gméling K, Massaferro GI, Meister CM, Nullo FE (2009) Preliminary K-Ar geochronology of Neogene back arc volcanism in Northern Patagonia, Argentina. III International Maar Conference. IAVCEI, Malargüe, pp 40–41

    Google Scholar 

  • Hervé F (1998) Late Triassic rocks in the subduction complex of Aysén, southern Chile. Event Stratigraphy of Gondwana: J Afr Earth Sci 10:224

    Google Scholar 

  • Hervé F, Fanning CM (2001) Late Triassic detrital zircons in meta-turbidites of the Chonos Metamorphic Complex, southern Chile. Rev Geol Chile 28:91–104

    Article  Google Scholar 

  • Hervé F, Pankhurst RJ, Drake R, Beck ME (1995) Pillow metabasalts in a mid-Tertiary extensional basin adjacent to the Liquiñe-Ofqui fault zone: the Isla Magdalena area, Aysén, Chile. J South Am Earth Sci 8:33–46

    Article  Google Scholar 

  • Hervé F, Sanhueza A, Silva C, Pankhurst RJ, Fanning MC, Campbell H, Crundwell M (2001) A Neogene age for Traiguén Formation, Aysén, Chile, as revealed by shrimp U-Pb dating of detrital zircons. In: III Simposio Sudamericano de Geología Isotópica, Pucón, pp 570–574

    Google Scholar 

  • James D, Sacks IE (1999) Cenozoic formation of the Central Andes: a geophysical perspective. In: Skinner BJ (ed) Geology and Ore Deposits of the Central Andes. Soc Econ Geol: 1–26

    Google Scholar 

  • Janak J, Sprlak M (2006) New Software for Gravity Field Modelling Using Spherical Armonic. Geodetic and Cartographic Horizon 52:1–8

    Google Scholar 

  • Jordan T, Burns W, Veiga R, Pángaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the Southern Andes caused by increased convergence rate: Amid-Cenozoic trigger for the Andes. Tectonics 20:308–324

    Article  Google Scholar 

  • Kay SM, Coira BL (2009) Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano-Puna Plateau. In: Kay SM, Ramos VA, Dickinson WR (eds) Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision. Geol Soc Am Memoirs 204, Boulder, pp 229–259

    Google Scholar 

  • Kay SM, Maksaev VA, Moscoso R, Mpodozis C, Nasi C (1987) Probing the evolving Andean lithosphere: Mid-Late Tertiary Magmatism in Chile (29°–30°30´) over the modern zone of subhorizontal subduction. J Geophys Res 92:6173–6189

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for mid late Tertiary magmatic rocks associated with shallowing zone and thickening crust in the central Andes (28° to 33° S). In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geological Society of America, Special Paper 265: 113–137

    Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism and mineral deposits of the Central Andes (22º–23º S Latitude). In: Skinner BJ (ed) Geology and Ore Deposits of the Central Andes. Society of Economic Geologists, Special Publication 7, pp 27–59

    Google Scholar 

  • Kay SM, Burns M, Copeland P (2006) Upper Cretaceous to Holocene Magmatism over the Neuquén basin: Evidence for transient shallowing of the subduction zone under the Neuquén Andes (36° S to 38° S latitude). In: Kay SM, Ramos VA (eds) Late Cretaceous to Recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquen basin (36–39º S). Geological Society of America, Special Paper 407, pp 19–60

    Google Scholar 

  • Kay SM, Ardolino AA, Gorring ML, Ramos VA (2007) The Somuncura Large Igneous Province in Patagonia: Interaction of transcient mantle thermal anomaly with a subduction slab. J Petrol 48:43–77

    Article  Google Scholar 

  • Lange D, Rietbrock A, Haberland C, Bataille K, Dahm T, Tilmann F, Flüh ER (2007) Seismicity and geometry of the south Chilean subduction zone (41.5° S–43.5° S): Implications for controlling parameters. Geophys Res Lett 34:L06311. https://doi.org/10.1029/2006GL029190

    Article  Google Scholar 

  • Lara L, Rodriguez C, Moreno H, Pérez de Arce C (2001) Geocronología K-Ar y geoquímica del volcanismo plioceno superior-pleistoceno de los Andes del sur (39–42° S). Rev Geol Chile 28:67–90

    Article  Google Scholar 

  • Lavenu A, Cembrano J (1999) Compressional- and transpressional-stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 21:1669–1691

    Article  Google Scholar 

  • Li X (2001) Vertical resolution: gravity versus vertical gravity gradient. Lead Edge 20:901–904

    Article  Google Scholar 

  • Litvak VD, Poma S, Kay SM (2007) Paleogene and Neogene magmatism in the Valle del Cura region: a new perspective on the evolution of the Pampean flat slab, San Juan province, Argentina. J South Am Earth Sci 24:117–137

    Article  Google Scholar 

  • Litvak VD, Spagnuolo MG, Folguera A, Poma S, Jones R, Ramos VA (2015) Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34°30–3’7S), Argentina. J South Am Earth Sci 64:365–380

    Article  Google Scholar 

  • Manea VC, Pérez-Gussinyé M, Manea M (2012) Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology 40:35–38. https://doi.org/10.1130/G32543.1

    Article  Google Scholar 

  • Marshall L, Salinas P (1990) Stratigraphy of the Río Frías Formation (Miocene), along the Alto Río Cisnes, Aisén, Chile. Rev Geol Chile 17:57–87

    Google Scholar 

  • Marshall LG, Pascual R, Curtis GH, Drake RE (1977) South american geochronology: radiometric time scale for middle to late tertiary mammal-bearing horizons in patagonia. Science 195:1325–8. https://doi.org/10.1126/science.195.4284.1325

    Article  Google Scholar 

  • Massaferro G, Haller M, D’Orazio M, Alric V (2006) Sub-recent volcanism in Northern Patagonia: A tectonomagmatic approach. J Volcanol Geoth Res 155:227–243

    Article  Google Scholar 

  • Maus S, Sazonova T, Hemant K, Fairhead JD, Ravat D (2007) Na-tional Geophysical Data Center candidate for the World Digital Magnetic Anomaly Map. Geochem Geophys Geosyst 8:Q06017. https://doi.org/10.1029/2007GC001643

    Google Scholar 

  • Mazzoni M, Benvenuto A (1990) Radiometric ages of Tertiary ignimbrites and the Collón Curá Formation northwestern Patagonia. In: XI Congreso Geológico Argentino, San Juan, pp 87–90

    Google Scholar 

  • Mena M, Ré GH, Haller MJ, Singer SE, Vilas JF (2006) Paleomagnetism of the late Cenozoic basalts from northern Patagonia. Earth Planets Sp 58:1273–1281

    Article  Google Scholar 

  • Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9:1–19. https://doi.org/10.1029/2007GC001743

    Article  Google Scholar 

  • Muñoz J, Troncoso R, Duhart P, Crignola P, Farmer L, Stern CR (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chile 27:177–203

    Article  Google Scholar 

  • Orts D, Folguera A, Encinas A, Ramos M, Tobal J, Ramos VA (2012) Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30′–43° S). Tectonics 31: TC3012. https://doi.org/10.1029/2011TC003084

  • Orts D, Folguera A, Gimenez M, Ruiz F, Rojas Vera E, Lince Klinger F (2015) Cenozoic building and deformational processes in the North Patagonian Andes. J Geodyn 86:26–41

    Article  Google Scholar 

  • O’Driscoll LJ, Richards MA, Humphreys ED (2012) Nazca-South America interactions and the late Eocene-late Oligocene flat-slab episode in the central Andes. Tectonics 31:TC2013. https://doi.org/10.1029/2011TC003036

  • Pankhurst RJ, Weaver SD, Hervé F, Larrondo P (1999) Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysen, southern Chile. J Geol Soc London 156:673–694

    Article  Google Scholar 

  • Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallón) and South American plates since Late Cretaceous time. Tectonics 6:233–248

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth Gravitational Model to Degree 2160: EGM2008. EGU General Assembly, Vienna, pp 13–18

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. https://doi.org/10.1029/2011JB008916

    Article  Google Scholar 

  • Pécskay Z, Haller M, Németh K (2007) Preliminary K/Ar geochronology of the Crater Basalt volcanic field (CBVF), northern Patagonia. Rev Asoc Geol Argent 62:25–29

    Google Scholar 

  • Peroni GO, Hegedus AG, Cerdan J, Legarreta L, Uliana MA, Laffite G (1995) Hydrocarbon Accumulation in an Inverted Segment of the Andean Foreland: San Bernardo Belt, Central Patagonia. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum Basins of South America. Am Assoc Petrol Geol Memoir 62, pp 403–419

    Google Scholar 

  • Ramírez de Arellano C, Putlitz B, Müntener O, Ovtcharova M (2012) High precision U/Pb zircon dating of the Chaltén Plutonic Complex (Cerro Fitz Roy, Patagonia) and its relationship to arc migration in the southernmost Andes. Tectonics 31: TC4009. https://doi.org/10.1029/2011TC003048

  • Ramos VA (1981). Descripción geológica de la hoja 47ab, Lago Fontana: provincia del Chubut. Buenos Aires

    Google Scholar 

  • Ramos VA, Kay SM (1992) Southern Patagonian plateau basalts and deformation: Backarc testimony of ridge collisions. Tectonophysics 205:261–282. https://doi.org/10.1016/0040-1951(92)90430-E

    Article  Google Scholar 

  • Ramos M, Orts D, Calatayud F, Pazos P, Folguera A, Ramos VA (2011) Estructura, estratigrafía y evolución tectónica de la cuenca de Ñirihuao en las nacientes del río Cuyamen (Chubut, Argentina). Rev Asoc Geol Argent 68:210–224

    Google Scholar 

  • Ramos M, Tobal J, Sagripanti L, Folguera A, Orts D, Giménez M, Ramos V (2015) The North Patagonian orogenic front and foreland evolution: Ñirihuau-Ñorquinco Depocenter (~42º S). J South Am Earth Sci 64:467–485

    Article  Google Scholar 

  • Rapela C, Kay S (1988) Late Paleozoic to Recent magmatic evolution of northern Patagonia. Episodes 11:175–182

    Google Scholar 

  • Rapela C, Munizaga F, Dalla Salda L, Hervé F, Parada M, Cingolani C (1987) Nuevas edades potasio-argón de los granitoides del sector nororiental de los Andes Patagónicos. X Congreso Geológico Argentino, Tucumán, Actas 1:18–20

    Google Scholar 

  • Rapela C, Spalletti L, Merodio JC, Aragón E (1988) Temporal evolution and spatial variation of early tertiary volcanism in the Patagonian Andes (40° S–42°30′S). J South Am Earth Sci 1:75–88. https://doi.org/10.1016/0895-9811(88)90017-X

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Fanning CM, Herve F (2005) Pacific subduction coeval with the Karoo mantle plume: the Early Jurasssic Subcordilleran belt of northwestern Patagonia. Geological Society of London, Special Publication 246:217–239. https://doi.org/10.1144/GSL.SP.2005.246.01.07

    Article  Google Scholar 

  • Rojas Vera EA, Folguera A, Valcarce GZ, Giménez M, Ruiz F, Martínez P, Bottesi G, Ramos V (2010) Neogene to Quaternary extensional reactivation of a fold and thrust belt: The Agrio belt in the Southern Central Andes and its relation to the Loncopué trough (38°–39° S). Tectonophysics 492:279–294

    Article  Google Scholar 

  • Silver PG, Russo RM, Lithgow-Bertelloni C (1998) Coupling of South American and African Plate Motion and Plate Deformation. Science 279:60–63. https://doi.org/10.1126/science.279.5347.60

    Article  Google Scholar 

  • Somoza R, Ghidella ME (2005) Convergencia en el margen occidental de América del sur durante el Cenozoico: Subducción de las placas de Nazca, Farallón y Aluk. Rev la Asoc Geol Argent 60:797–809

    Google Scholar 

  • Suárez M, De La Cruz R (2001) Jurassic to Miocene K-Ar dates from eastern central Patagonian Cordillera plutons, Chile (45°–48° S). Geol Mag 138:53–66

    Article  Google Scholar 

  • Suárez M, De La Cruz R, Bell CM (1996). Estratigrafía de la región de Coyhaique (Latitud 45o-46oS), Cordillera Patagónica, Chile. In: XIII Congreso Geológico Argentino and III Congreso de Exploración de Hidrocarburos, Capital Federal, pp 575–590

    Google Scholar 

  • Tašárová ZA (2007) Towards understanding the lithospheric structure of the southern Chilean subduction zone (36° S-42° S) and its role in the gravity field. Geophys J Int 170:995–1014. https://doi.org/10.1111/j.1365-246X.2007.03466.x

    Article  Google Scholar 

  • Thomson S (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42° S and 46° S: An appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geol Soc Am Bulletin 114:1159–1173

    Google Scholar 

  • Tobal J, Folguera A, Naipauer M, Sellés D, Likerman J, Boedo F, Gimenez M, Ramos VA (2015) Late Miocene extensional relaxation of the North Patagonian Andes (41°30´–42° S). Tectonophysics. https://doi.org/10.1016/j.tecto.2015.06.032

    Google Scholar 

  • Uieda L, Ussami N, Braitenberg CF (2010) Computation of the gravity gradient tensor due to topographic masses using tesseroids. In: Eos Transactions AGU, 91, Meeting of the Americas supplement, Abstract G22A–04

    Google Scholar 

  • Utgé S, Folguera A, Litvak VD, Ramos VA (2009) Geología del sector norte de la Cuenca de Cura Mallín: Zona de las lagunas de Epulaufquen (36°40’–50’S, 71°–71°10’W). Rev Asoc Geol Argent 64:230–247

    Google Scholar 

  • Vicente JC (2005) Dynamic paleogeography of the Jurassic Andean Basin: pattern of transgression and localisation of main straits through the magmatic arc. Rev Asoc Geol Argent 60:221–250

    Google Scholar 

  • Von Gosen W (2009) Stages of Late Palaeozoic deformation and intrusive activity in the western part of the North Patagonian Massif (southern Argentina) and their geotectonic implications. Geol Mag 146:48–71. https://doi.org/10.1017/S0016756808005311

    Article  Google Scholar 

  • Von Gosen W, Loske W (2004) Tectonic history of the Calcatapul Formation, Chubut province, Argentina, and the “Gastre fault system”. J South Am Earth Sci 18:73–88

    Article  Google Scholar 

  • Wienecke S (2006). A new analytical solution for the calculation of flexural rigidity: significance and applications. PhD thesis, Freie Universität Berlin

    Google Scholar 

  • Wienecke S, Braitenberg C, Goetze H (2007) A new analytical solution estimating the flexural rigidity in the Central Andes. Geophys J Int 169:789–794

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge PICT-2012-1490, PIP 2015–2017, 2015–2017. UBACYT, and Proyectos Fondecyt 11080115, 1110914, 1151146, for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Folguera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Folguera, A. et al. (2018). Neogene Growth of the Patagonian Andes. In: Folguera, A., et al. The Evolution of the Chilean-Argentinean Andes. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-67774-3_19

Download citation

Publish with us

Policies and ethics

Navigation