Pulmonary Hypertension in Chronic Neonatal Lung Disease: Mechanisms and Targets

  • Chapter
  • First Online:
Right Ventricular Physiology, Adaptation and Failure in Congenital and Acquired Heart Disease

Abstract

Chronic neonatal lung disease is a common complication of preterm birth for which no effective preventive or rescue therapies currently exist. This condition has been and remains associated with serious pulmonary and neurological sequelae that have major lifelong health implications. Pulmonary hypertension is a common and important associated phenomenon, contributing to high mortality. Considerable gaps in knowledge exist, particularly with respect to pathogenesis, natural history, mechanisms contributing to right ventricular failure and the role, if any, of pulmonary vasodilators. Addressing these gaps will require careful prospective study of at-risk infants and improved understanding of pathophysiological mechanisms employing relevant animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Delivoria-Papadopoulos M, Levison H, Swyer PR. Intermittent positive pressure respiration as a treatment in severe respiratory distress syndrome. Arch Dis Child. 1965;40(213):474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7):357–68.

    Article  PubMed  Google Scholar 

  3. Jain D, Bancalari E. Bronchopulmonary dysplasia: clinical perspective. Birth Defects Res A Clin Mol Teratol. 2014;100(3):134–44.

    Article  CAS  PubMed  Google Scholar 

  4. Shah PS, Sankaran K, Aziz K, Allen AC, Seshia M, Ohlsson A, et al. Outcomes of preterm infants <29 weeks gestation over 10-year period in Canada: a cause for concern? J Perinatol. 2012;32(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  5. Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhandari A, Panitch HB. Pulmonary outcomes in bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):219–26.

    Article  PubMed  Google Scholar 

  7. Gough A, Spence D, Linden M, Halliday HL, McGarvey LP. General and respiratory health outcomes in adult survivors of bronchopulmonary dysplasia: a systematic review. Chest. 2012;141(6):1554–67.

    Article  PubMed  Google Scholar 

  8. Anderson PJ, Doyle LW. Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):227–32.

    Article  PubMed  Google Scholar 

  9. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–9.

    Article  CAS  PubMed  Google Scholar 

  10. Mailaparambil B, Krueger M, Heizmann U, Schlegel K, Heinze J, Heinzmann A. Genetic and epidemiological risk factors in the development of bronchopulmonary dysplasia. Dis Markers. 2010;29(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rezvani M, Wilde J, Vitt P, Mailaparambil B, Grychtol R, Krueger M, et al. Association of a FGFR-4 gene polymorphism with bronchopulmonary dysplasia and neonatal respiratory distress. Dis Markers. 2013;35(6):633–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pietrzyk JJ, Kwinta P, Wollen EJ, Bik-Multanowski M, Madetko-Talowska A, Gunther CC, et al. Gene expression profiling in preterm infants: new aspects of bronchopulmonary dysplasia development. PLoS One. 2013;8(10):e78585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thurlbeck WM. Lung growth and alveolar multiplication. Pathobiol Annu. 1975;5:1–34.

    CAS  PubMed  Google Scholar 

  14. Thurlbeck WM. Postnatal growth and development of the lung. Am Rev Respir Dis. 1975;111(6):803–44.

    CAS  PubMed  Google Scholar 

  15. Kotecha S. Lung growth: implications for the newborn infant. Arch Dis Child Fetal Neonatal Ed. 2000;82(1):F69–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hislop AA. Airway and blood vessel interaction during lung development. J Anat. 2002;201(4):325–34.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol. 2014;50(2):233–45.

    PubMed  PubMed Central  Google Scholar 

  18. Zeltner TB, Caduff JH, Gehr P, Pfenninger J, Burri PH. The postnatal development and growth of the human lung. I. Morphometry. Respir Physiol. 1987;67(3):247–67.

    Article  CAS  PubMed  Google Scholar 

  19. Zeltner TB, Burri PH. The postnatal development and growth of the human lung. II. Morphology. Respir Physiol. 1987;67(3):269–82.

    Article  CAS  PubMed  Google Scholar 

  20. Coalson JJ. Pathology of chronic lung disease of early infancy. In: Bland RD, Coalson JJ, editors. Chronic lung disease in early infancy. New York: Marcel Dekker; 2000. p. 85–124.

    Google Scholar 

  21. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–80.

    Article  CAS  PubMed  Google Scholar 

  22. Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, et al. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J. 2008;32(2):321–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mourani PM, Abman SH. Pulmonary vascular disease in bronchopulmonary dysplasia: pulmonary hypertension and beyond. Curr Opin Pediatr. 2013;25(3):329–37.

    Article  CAS  PubMed  Google Scholar 

  24. An HS, Bae EJ, Kim GB, Kwon BS, Beak JS, Kim EK, et al. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Korean Circ J. 2010;40(3):131–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khemani E, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC, et al. Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics. 2007;120(6):1260–9.

    Article  PubMed  Google Scholar 

  26. Slaughter JL, Pakrashi T, Jones DE, South AP, Shah TA. Echocardiographic detection of pulmonary hypertension in extremely low birth weight infants with bronchopulmonary dysplasia requiring prolonged positive pressure ventilation. J Perinatol. 2011;31(10):635–40.

    Article  CAS  PubMed  Google Scholar 

  27. Bhat R, Salas AA, Foster C, Carlo WA, Ambalavanan N. Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics. 2012;129(3):e682–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim DH, Kim HS, Choi CW, Kim EK, Kim BI, Choi JH. Risk factors for pulmonary artery hypertension in preterm infants with moderate or severe bronchopulmonary dysplasia. Neonatology. 2012;101(1):40–6.

    Article  PubMed  Google Scholar 

  29. Thibeault DW, Truog WE, Ekekezie II. Acinar arterial changes with chronic lung disease of prematurity in the surfactant era. Pediatr Pulmonol. 2003;36(6):482–9.

    Article  PubMed  Google Scholar 

  30. Del Cerro MJ, Sabate Rotes A, Carton A, Deiros L, Bret M, Cordeiro M, et al. Pulmonary hypertension in bronchopulmonary dysplasia: Clinical findings, cardiovascular anomalies and outcomes. Pediatr Pulmonol. 2014;49(1):49–59.

    Article  PubMed  Google Scholar 

  31. Drossner DM, Kim DW, Maher KO, Mahle WT. Pulmonary vein stenosis: prematurity and associated conditions. Pediatrics. 2008;122(3):e656–61.

    Article  PubMed  Google Scholar 

  32. Sartori C, Allemann Y, Trueb L, Delabays A, Nicod P, Scherrer U. Augmented vasoreactivity in adult life associated with perinatal vascular insult. Lancet. 1999;353(9171):2205–7.

    Article  CAS  PubMed  Google Scholar 

  33. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91.

    Article  PubMed  Google Scholar 

  34. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135(3):794–804.

    Article  CAS  PubMed  Google Scholar 

  35. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31.

    Article  PubMed  Google Scholar 

  36. van Loon RL, Roofthooft MT, Delhaas T, van Osch-Gevers M, ten Harkel AD, Strengers JL, et al. Outcome of pediatric patients with pulmonary arterial hypertension in the era of new medical therapies. Am J Cardiol. 2010;106(1):117–24.

    Article  PubMed  Google Scholar 

  37. Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60.

    Article  PubMed  Google Scholar 

  38. Ehrenkranz RA. Nutrition, growth and clinical outcomes. World Rev Nutr Diet. 2014;110:11–26.

    Article  PubMed  Google Scholar 

  39. Frank L. Antioxidants, nutrition, and bronchopulmonary dysplasia. Clin Perinatol. 1992;19(3):541–62.

    CAS  PubMed  Google Scholar 

  40. Slaughter JL, Stenger MR, Reagan PB. Variation in the use of diuretic therapy for infants with bronchopulmonary dysplasia. Pediatrics. 2013;131(4):716–23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Segar JL. Neonatal diuretic therapy: furosemide, thiazides, and spironolactone. Clin Perinatol. 2012;39(1):209–20.

    Article  PubMed  Google Scholar 

  42. Yam J, Frank L, Roberts RJ. Age-related development of pulmonary antioxidant enzymes in the rat. Proc Soc Exp Biol Med. 1978;157(2):293–6.

    Article  CAS  PubMed  Google Scholar 

  43. Tanswell AK, Freeman BA. Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat. I. Developmental profiles. Pediatr Res. 1984;18(7):584–7.

    Article  CAS  PubMed  Google Scholar 

  44. Saugstad OD. Oxygen radical disease in neonatology. Semin Neonatol. 1998;3(3):229–38.

    Article  Google Scholar 

  45. The STOP-ROP Study Group. Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000;105(2):295–310.

    Article  Google Scholar 

  46. Boost-II Collaborative Groups. Oxygen saturation and outcomes in preterm infants. N Engl J Med. 2013;368(22):2094–104.

    Article  CAS  Google Scholar 

  47. Bancalari E, Claure N. Oxygenation targets and outcomes in premature infants. JAMA. 2013;309(20):2161–2.

    Article  CAS  PubMed  Google Scholar 

  48. Lakshminrusimha S, Swartz DD, Gugino SF, Ma CX, Wynn KA, Ryan RM, et al. Oxygen concentration and pulmonary hemodynamics in newborn lambs with pulmonary hypertension. Pediatr Res. 2009;66(5):539–44.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lakshminrusimha S, Russell JA, Steinhorn RH, Ryan RM, Gugino SF, Morin FC 3rd, et al. Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation. Pediatr Res. 2006;59(1):137–41.

    Article  PubMed  Google Scholar 

  50. Mourani PM, Ivy DD, Gao D, Abman SH. Pulmonary vascular effects of inhaled nitric oxide and oxygen tension in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2004;170(9):1006–13.

    Article  PubMed  Google Scholar 

  51. Banks BA, Seri I, Ischiropoulos H, Merrill J, Rychik J, Ballard RA. Changes in oxygenation with inhaled nitric oxide in severe bronchopulmonary dysplasia. Pediatrics. 1999;103(3):610–8.

    Article  CAS  PubMed  Google Scholar 

  52. Ivy DD, Abman SH, Barst RJ, Berger RM, Bonnet D, Fleming TR, et al. Pediatric pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D117–26.

    Article  PubMed  Google Scholar 

  53. Kulik TJ, Rhein LM, Mullen MP. Pulmonary arterial hypertension in infants with chronic lung disease: will we ever understand it? J Pediatr. 2010;157(2):186–90.

    Article  PubMed  Google Scholar 

  54. Nyp M, Sandritter T, Pop**a N, Simon C, Truog WE. Sildenafil citrate, bronchopulmonary dysplasia and disordered pulmonary gas exchange: any benefits? J Perinatol. 2012;32(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  55. Wardle AJ, Wardle R, Luyt K, Tulloh R. The utility of sildenafil in pulmonary hypertension: a focus on bronchopulmonary dysplasia. Arch Dis Child. 2013;98(8):613–7.

    Article  PubMed  Google Scholar 

  56. Krishnan U, Krishnan S, Gewitz M. Treatment of pulmonary hypertension in children with chronic lung disease with newer oral therapies. Pediatr Cardiol. 2008;29(6):1082–6.

    Article  PubMed  Google Scholar 

  57. Rugolotto S, Errico G, Beghini R, Ilic S, Richelli C, Padovani EM. Weaning of epoprostenol in a small infant receiving concomitant bosentan for severe pulmonary arterial hypertension secondary to bronchopulmonary dysplasia. Minerva Pediatr. 2006;58(5):491–4.

    CAS  PubMed  Google Scholar 

  58. McIntyre CM, Hanna BD, Rintoul N, Ramsey EZ. Safety of epoprostenol and treprostinil in children less than 12 months of age. Pulm Circ. 2013;3(4):862–9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Borgdorff MA, Bartelds B, Dickinson MG, Boersma B, Weij M, Zandvoort A, et al. Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure-loaded right ventricle. Eur J Heart Fail. 2012;14(9):1067–74.

    Article  CAS  PubMed  Google Scholar 

  60. Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R, Haromy A, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116(3):238–48.

    Article  CAS  PubMed  Google Scholar 

  61. Mourani PM, Sontag MK, Younoszai A, Ivy DD, Abman SH. Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease. Pediatrics. 2008;121(2):317–25.

    Article  PubMed  PubMed Central  Google Scholar 

  62. McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorac Soc. 2014;11(Suppl 3):S146–53.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ghanta S, Leeman KT, Christou H. An update on pharmacologic approaches to bronchopulmonary dysplasia. Semin Perinatol. 2013;37(2):115–23.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354(20):2112–21.

    Article  CAS  PubMed  Google Scholar 

  65. Tyson JE, Wright LL, Oh W, Kennedy KA, Mele L, Ehrenkranz RA, et al. Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med. 1999;340(25):1962–8.

    Article  CAS  PubMed  Google Scholar 

  66. Doyle LW, Ehrenkranz RA, Halliday HL. Dexamethasone treatment in the first week of life for preventing bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology. 2010;98(3):217–24.

    Article  CAS  PubMed  Google Scholar 

  67. Dobson NR, Patel RM, Smith PB, Kuehn DR, Clark J, Vyas-Read S, et al. Trends in caffeine use and association between clinical outcomes and timing of therapy in very low birth weight infants. J Pediatr. 2014;164(5):992–8. e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taha D, Kirkby S, Nawab U, Dysart KC, Genen L, Greenspan JS, et al. Early caffeine therapy for prevention of bronchopulmonary dysplasia in preterm infants. J Matern Fetal Neonatal Med. 2014. https://doi.org/10.3109/14767058.2014.885941.

  69. Kreutzer K, Bassler D. Caffeine for apnea of prematurity: a neonatal success story. Neonatology. 2014;105(4):332–6.

    Article  CAS  PubMed  Google Scholar 

  70. Guimaraes H, Guedes MB, Rocha G, Tome T, Albino-Teixeira A. Vitamin A in prevention of bronchopulmonary dysplasia. Curr Pharm Des. 2012;18(21):3101–13.

    Article  CAS  PubMed  Google Scholar 

  71. Doyle LW, Ehrenkranz RA, Halliday HL. Early (< 8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2014;5:CD001146.

    Google Scholar 

  72. Price LC, Montani D, Tcherakian C, Dorfmuller P, Souza R, Gambaryan N, et al. Dexamethasone reverses monocrotaline-induced pulmonary arterial hypertension in rats. Eur Respir J. 2011;37(4):813–22.

    Article  CAS  PubMed  Google Scholar 

  73. Le Cras TD, Markham NE, Morris KG, Ahrens CR, McMurtry IF, Abman SH. Neonatal dexamethasone treatment increases the risk for pulmonary hypertension in adult rats. Am J Physiol Lung Cell Mol Physiol. 2000;278(4):L822–9.

    PubMed  Google Scholar 

  74. Ziegler JW, Ivy DD, Kinsella JP, Abman SH. The role of nitric oxide, endothelin, and prostaglandins in the transition of the pulmonary circulation. Clin Perinatol. 1995;22(2):387–403.

    CAS  PubMed  Google Scholar 

  75. Kang JL, Park W, Pack IS, Lee HS, Kim MJ, Lim CM, et al. Inhaled nitric oxide attenuates acute lung injury via inhibition of nuclear factor-kappa B and inflammation. J Appl Physiol. 2002;92(2):795–801.

    Article  CAS  PubMed  Google Scholar 

  76. Stenger MR, Rose MJ, Joshi MS, Rogers LK, Chicoine LG, Bauer JA, et al. Inhaled nitric oxide prevents 3-nitrotyrosine formation in the lungs of neonatal mice exposed to >95% oxygen. Lung. 2010;188(3):217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thomae KR, Nakayama DK, Billiar TR, Simmons RL, Pitt BR, Davies P. The effect of nitric oxide on fetal pulmonary artery smooth muscle growth. J Surg Res. 1995;59(3):337–43.

    Article  CAS  PubMed  Google Scholar 

  78. Tang JR, Seedorf G, Balasubramaniam V, Maxey A, Markham N, Abman SH. Early inhaled nitric oxide treatment decreases apoptosis of endothelial cells in neonatal rat lungs after vascular endothelial growth factor inhibition. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1271–80.

    Article  CAS  PubMed  Google Scholar 

  79. Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001;49(3):568–81.

    Article  CAS  PubMed  Google Scholar 

  80. Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175(10):978–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bachiller PR, Cornog KH, Kato R, Buys ES, Roberts JD Jr. Soluble guanylate cyclase modulates alveolarization in the newborn lung. Am J Physiol Lung Cell Mol Physiol. 2013;305(8):L569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tonelli AR, Haserodt S, Aytekin M, Dweik RA. Nitric oxide deficiency in pulmonary hypertension: Pathobiology and implications for therapy. Pulm Circ. 2013;3(1):20–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bland RD, Albertine KH, Carlton DP, Macritchie AJ. Inhaled nitric oxide effects on lung structure and function in chronically ventilated preterm lambs. Am J Respir Crit Care Med. 2005;172(7):899–906.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ladha F, Bonnet S, Eaton F, Hashimoto K, Korbutt G, Thebaud B. Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury. Am J Respir Crit Care Med. 2005;172(6):750–6.

    Article  PubMed  Google Scholar 

  85. Tourneux P, Markham N, Seedorf G, Balasubramaniam V, Abman SH. Inhaled nitric oxide improves lung structure and pulmonary hypertension in a model of bleomycin-induced bronchopulmonary dysplasia in neonatal rats. Am J Physiol Lung Cell Mol Physiol. 2009;297(6):L1103–11.

    Article  CAS  PubMed  Google Scholar 

  86. Teng RJ, Du J, Xu H, Bakhutashvili I, Eis A, Shi Y, et al. Sepiapterin improves angiogenesis of pulmonary artery endothelial cells with in utero pulmonary hypertension by recoupling endothelial nitric oxide synthase. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L334–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Park HS, Park JW, Kim HJ, Choi CW, Lee HJ, Kim BI, et al. Sildenafil alleviates bronchopulmonary dysplasia in neonatal rats by activating the hypoxia-inducible factor signaling pathway. Am J Respir Cell Mol Biol. 2013;48(1):105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vadivel A, Aschner JL, Rey-Parra GJ, Magarik J, Zeng H, Summar M, et al. L-citrulline attenuates arrested alveolar growth and pulmonary hypertension in oxygen-induced lung injury in newborn rats. Pediatr Res. 2010;68(6):519–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Raffay TM, Martin RJ, Reynolds JD. Can nitric oxide-based therapy prevent bronchopulmonary dysplasia? Clin Perinatol. 2012;39(3):613–38.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Askie LM, Ballard RA, Cutter GR, Dani C, Elbourne D, Field D, et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials. Pediatrics. 2011;128(4):729–39.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cole FS, Alleyne C, Barks JD, Boyle RJ, Carroll JL, Dokken D, et al. NIH Consensus Development Conference Statement: inhaled nitric-oxide therapy for premature infants. Pediatrics. 2011;127(2):363–9.

    Article  PubMed  Google Scholar 

  92. Day RW, Lynch JM, White KS, Ward RM. Acute response to inhaled nitric oxide in newborns with respiratory failure and pulmonary hypertension. Pediatrics. 1996;98(4 Pt 1):698–705.

    CAS  PubMed  Google Scholar 

  93. Gaston B, Singel D, Doctor A, Stamler JS. S- nitrosothiol signaling in respiratory biology. Am J Respir Crit Care Med. 2006;173(11):1186–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Auten RL, Mason SN, Whorton MH, Lampe WR, Foster WM, Goldberg RN, et al. Inhaled ethyl nitrite prevents hyperoxia-impaired postnatal alveolar development in newborn rats. Am J Respir Crit Care Med. 2007;176(3):291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moya MP, Gow AJ, Califf RM, Goldberg RN, Stamler JS. Inhaled ethyl nitrite gas for persistent pulmonary hypertension of the newborn. Lancet. 2002;360(9327):141–3.

    Article  CAS  PubMed  Google Scholar 

  96. Gadhia MM, Cutter GR, Abman SH, Kinsella JP. Effects of early inhaled nitric oxide therapy and vitamin A supplementation on the risk for bronchopulmonary dysplasia in premature newborns with respiratory failure. J Pediatr. 2014;164(4):744–8.

    Article  CAS  PubMed  Google Scholar 

  97. Konig K, Barfield CP, Guy KJ, Drew SM, Andersen CC. The effect of sildenafil on evolving bronchopulmonary dysplasia in extremely preterm infants: a randomised controlled pilot study. J Matern Fetal Neonatal Med. 2014;27(5):439–44.

    Article  PubMed  CAS  Google Scholar 

  98. Thomas DD, Miranda KM, Colton CA, Citrin D, Espey MG, Wink DA. Heme proteins and nitric oxide (NO): the neglected, eloquent chemistry in NO redox signaling and regulation. Antioxid Redox Signal. 2003;5(3):307–17.

    Article  CAS  PubMed  Google Scholar 

  99. Thomas DD, Espey MG, Vitek MP, Miranda KM, Wink DA. Protein nitration is mediated by heme and free metals through Fenton-type chemistry: an alternative to the NO/O2- reaction. Proc Natl Acad Sci U S A. 2002;99(20):12691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van der Vliet A, Eiserich JP, O’Neill CA, Halliwell B, Cross CE. Tyrosine modification by reactive nitrogen species: a closer look. Arch Biochem Biophys. 1995;319(2):341–9.

    Article  PubMed  Google Scholar 

  101. Gole MD, Souza JM, Choi I, Hertkorn C, Malcolm S, Foust RF 3rd, et al. Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2000;278(5):L961–7.

    CAS  PubMed  Google Scholar 

  102. Peluffo G, Radi R. Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res. 2007;75(2):291–302.

    Article  CAS  PubMed  Google Scholar 

  103. Souza JM, Peluffo G, Radi R. Protein tyrosine nitration--functional alteration or just a biomarker? Free Radic Biol Med. 2008;45(4):357–66.

    Article  CAS  PubMed  Google Scholar 

  104. Turko IV, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev. 2002;54(4):619–34.

    Article  CAS  PubMed  Google Scholar 

  105. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sheffield M, Mabry S, Thibeault DW, Truog WE. Pulmonary nitric oxide synthases and nitrotyrosine: findings during lung development and in chronic lung disease of prematurity. Pediatrics. 2006;118(3):1056–64.

    Article  PubMed  Google Scholar 

  107. Banks BA, Ischiropoulos H, McClelland M, Ballard PL, Ballard RA. Plasma 3-nitrotyrosine is elevated in premature infants who develop bronchopulmonary dysplasia. Pediatrics. 1998;101(5):870–4.

    Article  CAS  PubMed  Google Scholar 

  108. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87(4):1620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zou M, Martin C, Ullrich V. Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol Chem. 1997;378(7):707–13.

    Article  CAS  PubMed  Google Scholar 

  110. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys. 1996;271(5 Pt 1):C1424–37.

    CAS  Google Scholar 

  111. Quijano C, Alvarez B, Gatti RM, Augusto O, Radi R. Pathways of peroxynitrite oxidation of thiol groups. Biochem J. 1997;322(Pt 1):167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Belik J, Jankov RP, Pan J, Tanswell AK. Peroxynitrite inhibits relaxation and induces pulmonary artery muscle contraction in the newborn rat. Free Radic Biol Med. 2004;37(9):1384–92.

    Article  CAS  PubMed  Google Scholar 

  113. Belik J, Stevens D, Pan J, McIntyre BA, Kantores C, Ivanovska J, et al. Pulmonary vascular and cardiac effects of peroxynitrite decomposition in newborn rats. Free Radic Biol Med. 2010;49(8):1306–14.

    Article  CAS  PubMed  Google Scholar 

  114. Masood A, Belcastro R, Li J, Kantores C, Jankov RP, Tanswell AKA. peroxynitrite decomposition catalyst prevents 60% O2-mediated rat chronic neonatal lung injury. Free Radic Biol Med. 2010;49(7):1182–91.

    Article  CAS  PubMed  Google Scholar 

  115. Jankov RP, Lewis P, Kantores C, Ivanovska J, EZ X, Van Vliet T, et al. Peroxynitrite mediates right-ventricular dysfunction in nitric oxide-exposed juvenile rats. Free Radic Biol Med. 2010;49(9):1453–67.

    Article  CAS  PubMed  Google Scholar 

  116. Mingone CJ, Gupte SA, Ali N, Oeckler RA, Wolin MS. Thiol oxidation inhibits nitric oxide-mediated pulmonary artery relaxation and guanylate cyclase stimulation. Am J Physiol Lung Cell Mol Physiol. 2006;290(3):L549–57.

    Article  CAS  PubMed  Google Scholar 

  117. Farrow KN, Groh BS, Schumacker PT, Lakshminrusimha S, Czech L, Gugino SF, et al. Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ Res. 2008;102(2):226–33.

    Article  CAS  PubMed  Google Scholar 

  118. Peng G, Ivanovska J, Kantores C, Van Vliet T, Engelberts D, Kavanagh BP, et al. Sustained therapeutic hypercapnia attenuates pulmonary arterial Rho-kinase activity and ameliorates chronic hypoxic pulmonary hypertension in juvenile rats. Am J Physiol Heart Circ Physiol. 2012;302(12):H2599–611.

    Article  CAS  PubMed  Google Scholar 

  119. Jankov RP, Kantores C, Pan J, Belik J. Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L233–45.

    Article  CAS  PubMed  Google Scholar 

  120. Jankov RP, Negus A, Tanswell AK. Antioxidants as therapy in the newborn: Some words of caution. Pediatr Res. 2001;50(6):681–7.

    Article  CAS  PubMed  Google Scholar 

  121. Davis JM, Rosenfeld WN, Richter SE, Parad MR, Gewolb IH, Spitzer AR, et al. Safety and pharmacokinetics of multiple doses of recombinant human CuZn superoxide dismutase administered intratracheally to premature neonates with respiratory distress syndrome. Pediatrics. 1997;100(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  122. Darlow BA, Winterbourn CC, Inder TE, Graham PJ, Harding JE, Weston PJ, et al. The effect of selenium supplementation on outcome in very low birth weight infants: a randomized controlled trial. The New Zealand Neonatal Study Group. J Pediatr. 2000;136(4):473–80.

    Article  CAS  PubMed  Google Scholar 

  123. Ahola T, Lapatto R, Raivio KO, Selander B, Stigson L, Jonsson B, et al. N-acetylcysteine does not prevent bronchopulmonary dysplasia in immature infants: a randomized controlled trial. J Pediatr. 2003;143(6):713–9.

    Article  CAS  PubMed  Google Scholar 

  124. Belik J, Stevens D, Pan J, Shehnaz D, Ibrahim C, Kantores C, et al. Chronic hypercapnia downregulates arginase expression and activity and increases pulmonary arterial smooth muscle relaxation in the newborn rat. Am J Physiol Lung Cell Mol Physiol. 2009;297(4):L777–84.

    Article  CAS  PubMed  Google Scholar 

  125. Pera T, Zuidhof AB, Smit M, Menzen MH, Klein T, Flik G, et al. Arginase inhibition prevents inflammation and remodeling in a Guinea pig model of chronic obstructive pulmonary disease. J Pharmacol Exp Ther. 2014;349(2):229–38.

    Article  CAS  PubMed  Google Scholar 

  126. Belik J, McIntyre BA, Enomoto M, Pan J, Grasemann H, Vasquez-Vivar J. Pulmonary hypertension in the newborn GTP cyclohydrolase I-deficient mouse. Free Radic Biol Med. 2011;51(12):2227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bueno M, Wang J, Mora AL, Gladwin MT. Nitrite signaling in pulmonary hypertension: mechanisms of bioactivation, signaling, and therapeutics. Antioxid Redox Signal. 2013;18(14):1797–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zuckerbraun BS, Shiva S, Ifedigbo E, Mathier MA, Mollen KP, Rao J, et al. Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation. Circulation. 2010;121(1):98–109.

    Article  CAS  PubMed  Google Scholar 

  129. Zuckerbraun BS, George P, Gladwin MT. Nitrite in pulmonary arterial hypertension: therapeutic avenues in the setting of dysregulated arginine/nitric oxide synthase signalling. Cardiovasc Res. 2011;89(3):542–52.

    Article  CAS  PubMed  Google Scholar 

  130. Baliga RS, Milsom AB, Ghosh SM, Trinder SL, Macallister RJ, Ahluwalia A, et al. Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation. 2012;125(23):2922–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pankey EA, Badejo AM, Casey DB, Lasker GF, Riehl RA, Murthy SN, et al. Effect of chronic sodium nitrite therapy on monocrotaline-induced pulmonary hypertension. Nitric Oxide. 2012;27(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 1996;15(9):2208–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol. 2000;522(Pt 2):177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Seasholtz TM, Majumdar M, Brown JH. Rho as a mediator of G protein-coupled receptor signaling. Mol Pharmacol. 1999;55(6):949–56.

    CAS  PubMed  Google Scholar 

  135. Scherer EQ, Herzog M, Wangemann P. Endothelin-1-induced vasospasms of spiral modiolar artery are mediated by rho-kinase-induced Ca(2+) sensitization of contractile apparatus and reversed by calcitonin gene-related Peptide. Stroke. 2002;33(12):2965–71.

    Article  CAS  PubMed  Google Scholar 

  136. McNamara PJ, Murthy P, Kantores C, Teixeira L, Engelberts D, van Vliet T, et al. Acute vasodilator effects of Rho-kinase inhibitors in neonatal rats with pulmonary hypertension unresponsive to nitric oxide. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L205–13.

    Article  CAS  PubMed  Google Scholar 

  137. Xu EZ, Kantores C, Ivanovska J, Engelberts D, Kavanagh BP, McNamara PJ, et al. Rescue treatment with a Rho-kinase inhibitor normalizes right ventricular function and reverses remodeling in juvenile rats with chronic pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2010;299(6):H1854–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ziino AJ, Ivanovska J, Belcastro R, Kantores C, Xu EZ, Lau M, et al. Effects of rho-kinase inhibition on pulmonary hypertension, lung growth, and structure in neonatal rats chronically exposed to hypoxia. Pediatr Res. 2010;67(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  139. Enomoto M, Gosal K, Cubells E, Escobar J, Vento M, Jankov RP, et al. Sex-dependent changes in the pulmonary vasoconstriction potential of newborn rats following short-term oxygen exposure. Pediatr Res. 2012;72(5):468–78.

    Article  CAS  PubMed  Google Scholar 

  140. Lee AH, Dhaliwal R, Kantores C, Ivanovska J, Gosal K, McNamara PJ, et al. Rho-kinase inhibitor prevents bleomycin-induced injury in neonatal rats independent of effects on lung inflammation. Am J Respir Cell Mol Biol. 2014;50(1):61–73.

    PubMed  Google Scholar 

  141. Feng J, Ito M, Ichikawa K, Isaka N, Nishikawa M, Hartshorne DJ, et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem. 1999;274(52):37385–90.

    Article  CAS  PubMed  Google Scholar 

  142. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;83(4):1325–58.

    Article  CAS  PubMed  Google Scholar 

  143. Sauzeau V, Rolli-Derkinderen M, Marionneau C, Loirand G, Pacaud P. RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation. J Biol Chem. 2003;278(11):9472–80.

    Article  CAS  PubMed  Google Scholar 

  144. Murthy KS, Zhou H, Grider JR, Makhlouf GM. Inhibition of sustained smooth muscle contraction by PKA and PKG preferentially mediated by phosphorylation of RhoA. Am J Physiol Gastrointest Liver Physiol. 2003;284(6):G1006–16.

    Article  CAS  PubMed  Google Scholar 

  145. Sawada N, Itoh H, Yamashita J, Doi K, Inoue M, Masatsugu K, et al. cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem Biophys Res Commun. 2001;280(3):798–805.

    Article  CAS  PubMed  Google Scholar 

  146. Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem. 2000;275(28):21722–9.

    Article  CAS  PubMed  Google Scholar 

  147. Jernigan NL, Walker BR, Resta TC. Chronic hypoxia augments protein kinase G-mediated Ca2+ desensitization in pulmonary vascular smooth muscle through inhibition of RhoA/Rho kinase signaling. Am J Physiol Lung Cell Mol Physiol. 2004;287(6):L1220–9.

    Article  CAS  PubMed  Google Scholar 

  148. Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, et al. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem. 2004;279(33):34496–504.

    Article  CAS  PubMed  Google Scholar 

  149. Gao Y, Portugal AD, Liu J, Negash S, Zhou W, Tian J, et al. Preservation of cGMP-induced relaxation of pulmonary veins of fetal lambs exposed to chronic high altitude hypoxia: role of PKG and Rho kinase. Am J Physiol Lung Cell Mol Physiol. 2008;295(5):L889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Guilluy C, Sauzeau V, Rolli-Derkinderen M, Guerin P, Sagan C, Pacaud P, et al. Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. Br J Pharmacol. 2005;146(7):1010–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hemnes AR, Zaiman A, Champion HC. PDE5A inhibition attenuates bleomycin-induced pulmonary fibrosis and pulmonary hypertension through inhibition of ROS generation and RhoA/Rho kinase activation. Am J Physiol Lung Cell Mol Physiol. 2008;294(1):L24–33.

    Article  CAS  PubMed  Google Scholar 

  152. Chung HH, Dai ZK, BN W, Yeh JL, Chai CY, Chu KS, et al. The xanthine derivative KMUP-1 inhibits models of pulmonary artery hypertension via increased NO and cGMP-dependent inhibition of RhoA/Rho kinase. Br J Pharmacol. 2010;160(4):971–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, et al. Pharmacological properties of Y-27632, a specific inhibitor of Rho-associated kinases. Mol Pharmacol. 2000;57(5):976–83.

    CAS  PubMed  Google Scholar 

  154. Sasaki Y, Suzuki M, Hidaka H. The novel and specific Rho-kinase inhibitor (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinoline)sulfonyl]-homopiperazine as a probing molecule for Rho-kinase-involved pathway. Pharmacol Ther. 2002;93(2–3):225–32.

    Article  CAS  PubMed  Google Scholar 

  155. McMurtry IF, Abe K, Ota H, Fagan KA, Oka M. Rho kinase-mediated vasoconstriction in pulmonary hypertension. Adv Exp Med Biol. 2010;661:299–308.

    Article  CAS  PubMed  Google Scholar 

  156. Ishikura K, Yamada N, Ito M, Ota S, Nakamura M, Isaka N, et al. Beneficial acute effects of Rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J. 2006;70(2):174–8.

    Article  CAS  PubMed  Google Scholar 

  157. Nagaoka T, Fagan KA, Gebb SA, Morris KG, Suzuki T, Shimokawa H, et al. Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med. 2005;171(5):494–9.

    Article  PubMed  Google Scholar 

  158. Li F, **a W, Yuan S, Sun R. Acute inhibition of Rho-kinase attenuates pulmonary hypertension in patients with congenital heart disease. Pediatr Cardiol. 2009;30(3):363–6.

    Article  PubMed  Google Scholar 

  159. Zeidan A, Javadov S, Karmazyn M. Essential role of Rho/ROCK-dependent processes and actin dynamics in mediating leptin-induced hypertrophy in rat neonatal ventricular myocytes. Cardiovasc Res. 2006;72(1):101–11.

    Article  CAS  PubMed  Google Scholar 

  160. Jankov RP, Kantores C, Belcastro R, Yi S, Ridsdale RA, Post M, et al. A role for platelet-derived growth factor β-receptor in a newborn rat model of endothelin-mediated pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol. 2005;288(6):L1162–70.

    Article  CAS  PubMed  Google Scholar 

  161. Jankov RP, Kantores C, Belcastro R, Yi M, Tanswell AK. Endothelin-1 inhibits apoptosis of pulmonary arterial smooth muscle in the neonatal rat. Pediatr Res. 2006;60(3):245–51.

    Article  CAS  PubMed  Google Scholar 

  162. Yi SL, Kantores C, Belcastro R, Cabacungan J, Tanswell AK, Jankov RP. 8-Isoprostane-induced endothelin-1 production by infant rat pulmonary artery smooth muscle cells is mediated by Rho-kinase. Free Radic Biol Med. 2006;41(6):942–9.

    Article  CAS  PubMed  Google Scholar 

  163. Dou D, Ma H, Zheng X, Ying L, Guo Y, Yu X, et al. Degradation of leucine zipper-positive isoform of MYPT1 may contribute to development of nitrate tolerance. Cardiovasc Res. 2010;86(1):151–9.

    Article  CAS  PubMed  Google Scholar 

  164. Keller RL, Tacy TA, Hendricks-Munoz K, Xu J, Moon-Grady AJ, Neuhaus J, et al. Congenital diaphragmatic hernia: endothelin-1, pulmonary hypertension, and disease severity. Am J Respir Crit Care Med. 2010;182(4):555–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lu Z, Xu X, Hu X, Lee S, Traverse JH, Zhu G, et al. Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation. 2010;121(13):1474–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ma H, He Q, Dou D, Zheng X, Ying L, Wu Y, et al. Increased degradation of MYPT1 contributes to the development of tolerance to nitric oxide in porcine pulmonary artery. Am J Physiol Lung Cell Mol Physiol. 2010;299(1):L117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hamid SA, Bower HS, Baxter GF. Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. Am J Physiol Heart Circ Physiol. 2007;292(6):H2598–606.

    Article  CAS  PubMed  Google Scholar 

  168. Kobayashi N, Horinaka S, Mita S, Nakano S, Honda T, Yoshida K, et al. Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts. Cardiovasc Res. 2002;55(4):757–67.

    Article  CAS  PubMed  Google Scholar 

  169. Lin G, Craig GP, Zhang L, Yuen VG, Allard M, McNeill JH, et al. Acute inhibition of Rho-kinase improves cardiac contractile function in streptozotocin-diabetic rats. Cardiovasc Res. 2007;75(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  170. Ikeda S, Satoh K, Kikuchi N, Miyata S, Suzuki K, Omura J, et al. Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice. Arterioscler Thromb Vasc Biol. 2014;34(6):1260–71.

    Article  CAS  PubMed  Google Scholar 

  171. Gosal K, Dunlop K, Ivanovska J, Kantores C, Jain A, McNamara PJ, et al. Right-ventricular systolic dysfunction is mediated by cardiac up-regulation of Rho-kinase activity in juvenile rats with chronic hypoxic pulmonary hypertension. Washington, DC: Pediatric Academic Societies; 2013.

    Google Scholar 

  172. Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the develo** lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2007;292(5):L1073–84.

    Article  CAS  PubMed  Google Scholar 

  173. Marsboom G, Pokreisz P, Gheysens O, Vermeersch P, Gillijns H, Pellens M, et al. Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells. 2008;26(4):1017–26.

    Article  PubMed  Google Scholar 

  174. Baker CD, Ryan SL, Ingram DA, Seedorf GJ, Abman SH, Balasubramaniam V. Endothelial colony-forming cells from preterm infants are increased and more susceptible to hyperoxia. Am J Respir Crit Care Med. 2009;180(5):454–61.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Fadini GP, Avogaro A, Ferraccioli G, Agostini C. Endothelial progenitors in pulmonary hypertension: new pathophysiology and therapeutic implications. Eur Respir J. 2010;35(2):418–25.

    Article  CAS  PubMed  Google Scholar 

  176. Baker CD, Seedorf GJ, Wisniewski BL, Black CP, Ryan SL, Balasubramaniam V, et al. Endothelial colony-forming cell conditioned media promote angiogenesis in vitro and prevent pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2013;305(1):L73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Alphonse RS, Vadivel A, Fung M, Shelley WC, Critser PJ, Ionescu L, et al. Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth. Circulation. 2014;129(21):2144–57.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A. 2003;100(14):8407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Patel KM, Crisostomo P, Lahm T, Markel T, Herring C, Wang M, et al. Mesenchymal stem cells attenuate hypoxic pulmonary vasoconstriction by a paracrine mechanism. J Surg Res. 2007;143(2):281–5.

    Article  CAS  PubMed  Google Scholar 

  180. Borghesi A, Massa M, Campanelli R, Bollani L, Tzialla C, Figar TA, et al. Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2009;180(6):540–6.

    Article  PubMed  Google Scholar 

  181. Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, et al. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med. 2009;180(11):1122–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180(11):1131–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Ionescu L, Byrne RN, van Haaften T, Vadivel A, Alphonse RS, Rey-Parra GJ, et al. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol Lung Cell Mol Physiol. 2012;303(11):L967–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr. 2014;164(5):966–72. e6

    Article  PubMed  Google Scholar 

  185. Toti P, Buonocore G, Tanganelli P, Catella AM, Palmeri ML, Vatti R, et al. Bronchopulmonary dysplasia of the premature baby: an immunohistochemical study. Pediatr Pulmonol. 1997;24(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  186. Been JV, Debeer A, van Iwaarden JF, Kloosterboer N, Passos VL, Naulaers G, et al. Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants develo** bronchopulmonary dysplasia. Pediatr Res. 2010;67(1):83–9.

    Article  CAS  PubMed  Google Scholar 

  187. Markewitz BA, Farrukh IS, Chen Y, Li Y, Michael JR. Regulation of endothelin-1 synthesis in human pulmonary arterial smooth muscle cells. Effects of transforming growth factor-beta and hypoxia. Cardiovasc Res. 2001;49(1):200–6.

    Article  CAS  PubMed  Google Scholar 

  188. Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2006;290(4):L661–L73.

    Article  CAS  PubMed  Google Scholar 

  189. Nakanishi H, Sugiura T, Streisand JB, Lonning SM, Roberts JD Jr. TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L151–61.

    Article  CAS  PubMed  Google Scholar 

  190. Bei Y, Hua-Huy T, Duong-Quy S, Nguyen VH, Chen W, Nicco C, et al. Long-term treatment with fasudil improves bleomycin-induced pulmonary fibrosis and pulmonary hypertension via inhibition of Smad2/3 phosphorylation. Pulm Pharmacol Ther. 2013;26(6):635–43.

    Article  CAS  PubMed  Google Scholar 

  191. Zhang YM, Bo J, Taffet GE, Chang J, Shi J, Reddy AK, et al. Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J. 2006;20(7):916–25.

    Article  CAS  PubMed  Google Scholar 

  192. Gong K, **ng D, Li P, Aksut B, Ambalavanan N, Yang Q, et al. Hypoxia induces downregulation of PPAR-γ in isolated pulmonary arterial smooth muscle cells and in rat lung via transforming growth factor-β signaling. Am J Physiol Lung Cell Mol Physiol. 2011;301(6):L899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sakurai R, Villarreal P, Husain S, Liu J, Sakurai T, Tou E, et al. Curcumin protects the develo** lung against long-term hyperoxic injury. Am J Physiol Lung Cell Mol Physiol. 2013;305(4):L301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ichihara S, Obata K, Yamada Y, Nagata K, Noda A, Ichihara G, et al. Attenuation of cardiac dysfunction by a PPAR-alpha agonist is associated with down-regulation of redox-regulated transcription factors. J Mol Cell Cardiol. 2006;41(2):318–29.

    Article  CAS  PubMed  Google Scholar 

  195. Rindfleisch MS, Hasday JD, Taciak V, Broderick K, Viscardi RM. Potential role of interleukin-1 in the development of bronchopulmonary dysplasia. J Interf Cytokine Res. 1996;16(5):365–73.

    Article  CAS  Google Scholar 

  196. Koksal N, Kayik B, Cetinkaya M, Ozkan H, Budak F, Kilic S, et al. Value of serum and bronchoalveolar fluid lavage pro- and anti-inflammatory cytokine levels for predicting bronchopulmonary dysplasia in premature infants. Eur Cytokine Netw. 2012;23(2):29–35.

    CAS  PubMed  Google Scholar 

  197. Bry K, Whitsett JA, Lappalainen U. IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol. 2007;36(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  198. Johnson BH, Yi M, Masood A, Belcastro R, Li J, Shek S, et al. A critical role for the IL-1 receptor in lung injury induced in neonatal rats by 60% O2. Pediatr Res. 2009;66(3):260–5.

    Article  CAS  PubMed  Google Scholar 

  199. Dunlop K, Gosal K, Kantores C, Ivanovska J, Dhaliwal R, Desjardins JF, et al. Therapeutic hypercapnia prevents inhaled nitric oxide-induced right-ventricular systolic dysfunction in juvenile rats. Free Radic Biol Med. 2014;69C:35–49.

    Article  CAS  Google Scholar 

  200. Mertens LL, Friedberg MK. Imaging the right ventricle – current state of the art. Nat Rev Cardiol. 2010;7(10):551–63.

    Article  PubMed  Google Scholar 

  201. Banerjee D, Haddad F, Zamanian RT, Nagendran J. Right ventricular failure: a novel era of targeted therapy. Curr Heart Fail Rep. 2010;7(4):202–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Jankov MBBS, PhD, FRACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jankov, R.P., Tanswell, A.K. (2018). Pulmonary Hypertension in Chronic Neonatal Lung Disease: Mechanisms and Targets. In: Friedberg, M., Redington, A. (eds) Right Ventricular Physiology, Adaptation and Failure in Congenital and Acquired Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-67096-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67096-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67094-2

  • Online ISBN: 978-3-319-67096-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation