High Order Semi-Lagrangian Particle Methods

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Abstract

Semi-lagrangian (or remeshed) particle methods are conservative particle methods where the particles are remeshed at each time-step. The numerical analysis of these methods show that their accuracy is governed by the regularity and moment properties of the remeshing kernel and that their stability is guaranteed by a lagrangian condition which does not rely on the grid size. Turbulent transport and more generally advection dominated flows are applications where these features make them appealing tools. The adaptivity of the method and its ability to capture fine scales at minimal cost can be further reinforced by remeshing particles on adapted grids, in particular through wavelet-based multi-resolution analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Basdevant, M. Holschneider, V. Perrier, Methode des ondelettes mobiles. C. R. Acad. Sci. Paris I 310, 647–652 (1990)

    MATH  Google Scholar 

  2. M. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 3, 484–512 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Bergdorf, G.-H. Cottet, P. Koumoutsakos, Multilevel adaptive particle methods for convection-diffusion equations. SIAM Multiscale Model. Simul. 4, 328–357 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Bergdorf, P. Koumoutsakos, A Lagrangian particle-wavelet method. SIAM Multiscale Model. Simul. 5(3), 980–995 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Cohen, I. Daubechies, J.C. Feauveau, Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. G.-H. Cottet, A new approach for the analysis of vortex methods in 2 and 3 dimensions. Ann. Inst. Henri Poincaré 5, 227–285 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. G.-H. Cottet, P. Koumoutsakos, Vortex Methods (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  8. G.-H. Cottet, P. Koumoutsakos, M. Ould-Salihi, Vortex methods with spatially varying cores. J. Comput. Phys. 162, 164–185 (2000)

    Article  MATH  Google Scholar 

  9. G.-H. Cottet, B. Michaux, S. Ossia, G. Vanderlinden, A comparison of spectral and vortex methods in three-dimensional incompressible flows. J. Comput. Phys. 175, 702–712 (2002)

    Article  MATH  Google Scholar 

  10. G.-H. Cottet, J.-M. Etancelin, F. Perignon, C. Picard, High order Semi-Lagrangian particles for transport equations: numerical analysis and implementation issues. ESAIM: Math. Model. Numer. Anal. 48, 1029–1060 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Gazzola, B. Hejazialhosseini, P. Koumoutsakos, Reinforcement learning and wavelet adapted vortex methods for simulations of self-propelled swimmers. SIAM J. Sci. Comput. 36, 622–639 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. R.A. Kerr, Planetary origins: a quickie birth of jupiters and saturns. Science 298, 1698–1689 (2002)

    Article  Google Scholar 

  13. P. Koumoutsakos, Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138, 821–857 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Koumoutsakos, A. Leonard, High resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 1–38 (1995)

    Article  MATH  Google Scholar 

  15. R. Krasny, Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292–313 (1986)

    Article  MATH  Google Scholar 

  16. J.-B. Lagaert, G. Balarac, G.-H. Cottet, Hybrid spectral particle method for the turbulent transport of a passive scalar. J. Comput. Phys. 260, 127–142 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Lossaso, J.O. Talton, N. Kwatra, R. Fedkiw, Two-way coupled SPH and particle level set fluid dynamics. IEEE Trans. Vis. Comput. Graph. 14, 797–804 (2008)

    Article  Google Scholar 

  18. A. Magni, G.-H. Cottet, Accurate, non-oscillatory remeshing schemes for particle methods. J. Comput. Phys. 231(1), 152–172 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. J.E. Martin, E. Meiburg, Numerical investigation of three-dimensional evolving jets subject to axisymmetric and azimuthal perturbation. J. Fluid Mech. 230, 271 (1991)

    Article  MATH  Google Scholar 

  20. J.J. Monaghan, Particle methods for hydrodynamics. Comput. Phys. Rep. 3, 71–124 (1985)

    Article  Google Scholar 

  21. P. Ploumhans, G.S. Winckelmans, J.K. Salmon, A. Leonard, M.S. Warren, Vortex methods for direct numerical simulation of three-dimensional bluff body flows: application to the sphere at Re = 300, 500, and 1000. J. Comput. Phys. 165, 354–406 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Rossinelli, B. Hejazialhosseini, W. van Rees, M. Gazzola, M. Bergdorf, P. Koumoutsakos, MRAG-I2D: multi-resolution adapted grids for remeshed vortex methods on multicore architectures. J. Comput. Phys. 288, 1–18 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Sethian, A. Ghoniem, Validation study of vortex methods. J. Comput. Phys. 54, 425–456 (1984)

    Article  Google Scholar 

  24. O. Vasilyev, Solving multi-dimensional evolution problems with localized structures using second generation wavelets. Int. J. Comput. Fluid Dyn. 17(2), 151–168, 17, 151–168 (2003)

    Google Scholar 

  25. G. Winckelmans, A. Leonard, Contributions to vortex methods for the computation of three dimensional incompressible unsteady flows. J. Comput. Phys. 109, 247–273 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges-Henri Cottet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cottet, GH., Koumoutsakos, P. (2017). High Order Semi-Lagrangian Particle Methods. In: Bittencourt, M., Dumont, N., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-65870-4_6

Download citation

Publish with us

Policies and ethics

Navigation