Foraging Strategies of Cursorial and Ambush Spiders

  • Chapter
  • First Online:
Behaviour and Ecology of Spiders

Abstract

Food consumption in animals is a complex task with multiple steps. Choosing an adequate foraging site is the very first one, and involves not only the presence of prey and predators but also abiotic conditions. Because spiders are usually cannibalistic, conspecifics fall within these two categories in addition to being competitors. Specifically for ambush and cursorial spiders, the type of substrate is also very relevant because spiders often rely on substrate-borne vibrations to find their prey, and distinct substrates propagate vibrations differently. At this point or after contacting the prey, spiders have to decide whether or not to attempt capture. Such a decision involves profitability, prey defenses, and the physiological state of the spider. To capture prey, ambush and cursorial spiders may rely on web sheets, adhesive setae on the tips of the legs, glue-spitting, and venom directly injected from the fangs of the chelicerae. The actual mode of ingestion also varies among species. For almost every step from picking a foraging place to prey consumption, multiple sensory modalities may be used, such as vision, contact chemoreception, olfaction, detection of substrate-borne vibrations, and air displacement. Adequately choosing where to forage, properly detecting, choosing, capturing, and handling prey may have important fitness implications. In this chapter, we summarize the knowledge on these topics with regard to Neotropical cursorial and ambush spiders, detecting gaps and areas better covered within the topics above. Finally, we attempt to suggest promising model species to investigate these different steps of foraging in these animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ades C, Ramires EN (2002) Asymmetry of leg use during prey handling in the spider Scytodes globula (Scytodidae). J Insect Behav 15:563–570

    Article  Google Scholar 

  • Aguilar-Argüello SO, García-Chávez JH (2015) Importance of hunger and prey type on predatory behavior stages in Corythalia albicincta (Araneae: Salticidae). J Arachnol 43:143–151

    Article  Google Scholar 

  • Aisenberg A, González M, Laborda A, Postiglioni R, Simó M (2009) Reversed cannibalism, foraging, and surface activities of Allocosa alticeps and Allocosa brasiliensis: two wolf spiders from coastal sand dunes. J Arachnol 37:135–138

    Article  Google Scholar 

  • Albín A, Toscano-Gadea CA (2015) Predation among armored arachnids: Bothriurus bonariensis (scorpions, Bothriuridae) versus four species of harvestmen (harvestmen, Gonyleptidae). Behav Process 121:1–7

    Article  Google Scholar 

  • Albo MJ, Melo-González V, Carballo M, Baldenegro F, Trillo MC, Costa FG (2014) Evolution of worthless gifts is favoured by male condition and prey access in spiders. Anim Behav 92:25–31

    Article  Google Scholar 

  • Amaya CC, Klawinski PD, Formanowicz DR (2001) The effects of leg autotomy on running speed and foraging ability in two species of wolf spider, (Lycosidae). Am Midl Nat 145:201–205

    Article  Google Scholar 

  • Barnes MC, Persons MH, Rypstra AL (2002) The effect of predator chemical cue age on chemically-mediated antipredator behavior in the wolf spider Pardosa milvina (Araneae: Lycosidae). J Insect Behav 15:269–281

    Article  Google Scholar 

  • Barth FG (1982) Vibratory communication in a spider. In: Barth FG (ed) Joint Symp Neurobiology and Strategies of Adaptation. Universitatsdruck, Frankfurt am Main, pp 1–9

    Google Scholar 

  • Barth FG (1985) Neuroethology of the spider vibration sense. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin/Heidelberg/New York/Tokyo, pp 203–229

    Chapter  Google Scholar 

  • Barth FG (2002) A spider ´s world: senses and behavior. Springer, Berlin

    Book  Google Scholar 

  • Barth FG, Holler A (1999) Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli. Phil Trans R Soc Lond B 354:183–192

    Article  Google Scholar 

  • Barth FG, Seyfarth EA (1979) Cupiennius salei keys. (Araneae) in the highlands of central Guatemala. J Arachnol 7:255–263

    Google Scholar 

  • Barth FG, Bleckmann H, Bohnenberger J, Seyfarth EA (1988) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae). II On the vibratory environment of a wandering spider Oecologia 77:194–201

    PubMed  Google Scholar 

  • Barth FG, Wast U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei). Phil Trans R Soc Lond B 340:445–461

    Article  Google Scholar 

  • Bartos M (2004) The prey of Yllenus arenarius (Araneae, Salticidae). Bull Br Arachnol Soc 13:83–85

    Google Scholar 

  • Bartos M (2007) Hunting prey with different escape potentials—alternative predatory tactics in a dune dwelling salticid. J Arachnol 35:499–508

    Article  Google Scholar 

  • Bartos M (2008) Alternative predatory tactics in a juvenile jum** spider. J Arachnol 36:300–305

    Article  Google Scholar 

  • Bartos M (2011) Partial dietary separation between coexisting cohorts of Yllenus arenarius (Araneae: Salticidae). J Arachnol 39:230–235

    Article  Google Scholar 

  • Bartos M, Szczepko K (2012) Development of prey-specific predatory behavior in a jum** spider (Araneae: Salticidae). J Arachnol 40:228–233

    Article  Google Scholar 

  • Bartos M, Szczepko K, Stanska M (2013) Predatory response to changes in camouflage in a sexually dimorphic jum** spider. J Arachnol 41:381–386

    Article  Google Scholar 

  • Benelli G, Romano D, Messing RH, Canale A (2015) Population-level lateralized aggressive and courtship displays make better fighters not lovers: evidence from a fly. Behav Process 115:163–168

    Article  Google Scholar 

  • Borges LM, Da Rosa CM, Franzoi Dri G, Bertani R (2016) Predation of the snake Erythrolamprus almadensis (Wagler,1824) by the tarantula Grammostola quirogai Montes De Oca,D’Elía and Pérez-Miles, 2016. Herpetology Notes 9:321–322

    Google Scholar 

  • Byrne RA, Kuba MJ, Meisel DV (2004) Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim Behav 68:1107–1114

    Article  Google Scholar 

  • Cardoso P, Pekár S, Jocqué R, Coddington JA, Catterall C (2011) Global patterns of guild composition and functional diversity of spiders. PLoS One 6:e21710. https://doi.org/10.1371/journal.pone.0021710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho LA, Souza ES, Willemart RH (2012) Behavioral analysis of the interaction between the spitting spider Scytodes globula (Araneae: Scytodidae) and the harvestman Discocyrtus invalidus (Opiliones: Gonyleptidae). J Arachnol 40:332–337

    Article  Google Scholar 

  • Carvell GE, Kuja JO, Jackson RR (2015) Rapid nectar-meal effects on a predator’s capacity to kill mosquitoes. R. Soc. open sci 2:140426. https://doi.org/10.1098/rsos.140426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castanho LM, Oliveira PS (1997) Biology and behaviour of the Neotropical ant-mimicking spider Aphantochilus rogersi (Araneae: Aphantochilidae): nesting, maternal care and ontogeny of ant-hunting techniques. J Zool 242:643–650

    Article  Google Scholar 

  • Chown SL, Nicolson SW (2004) Insect physiological ecology mechanisms and patterns. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cramer KL (2008) Are brown recluse spiders, Loxosceles reclusa (Araneae, Sicariidae) scavengers? The influence of predator satiation, prey size, and prey quality. J Arachnol 36:140–144

    Article  Google Scholar 

  • Cramer KL (2015) Activity patterns of a synanthropic population of the brown recluse spider, Loxosceles reclusa (Araneae: Sicariidae), with observations on feeding and mating. J Arachnol 43:67–71

    Article  Google Scholar 

  • Dias BC, Souza ES, Hara MR, Willemart RH (2014) Intense leg tap** behavior by the harvestman Mischonyx cuspidatus (Gonyleptidae): An undescribed defensive behavior in Opiliones? J Arachnol 42:123–125

    Article  Google Scholar 

  • Dias BC, Willemart RH (2013) The effectiveness of post-contact defenses in a prey with no pre-contact detection. Zoology 116:168–174

    Article  PubMed  Google Scholar 

  • Dukas R, Morse DH (2005) Crab spiders show mixed effects on flower-visiting bees and no effect on plant fitness components. Écoscience 12:244–247. https://doi.org/10.2980/i1195-6860-12-2-244.1

    Article  Google Scholar 

  • Eiben B, Persons M (2007) The effect of prior exposure to predator cues on chemically-mediated defensive behavior and survival in the wolf spider Rabidosa rabida (Araneae : Lycosidae). Behaviour 144:889–906

    Article  Google Scholar 

  • Eisner T, Rossini C, González A, Eisner M (2004) Chemical defense of an opilionid (Acanthopachylus aculeatus). J Exp Biol 207:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Erickson KS, Morse DH (1997) Predator size and the suitability of a common prey. Oecologia 109:608–614

    Article  PubMed  Google Scholar 

  • Escalante I, Aisenberg A, Costa FG (2015) Risky behaviors by the host could favor araneophagy of the spitting spider Scytodes globula on the hacklemesh weaver Metaltella simoni. J Ethol 33:125–136

    Article  Google Scholar 

  • Fenk LM, Hoinkes T, Schmid A (2010) Vision as a third sensory modality to elicit attack behavior in a nocturnal spider. J Comp Physiol A 196:957–961. https://doi.org/10.1007/s00359-010-0575-8

    Article  CAS  Google Scholar 

  • Fischer ML, Vasconcellos-Neto J, dos Santos Neto LG (2006) The prey and predators of Loxosceles intermedia Mello-Leitao 1934 (Araneae, Sicariidae). J Arachnol 34:485–488

    Article  Google Scholar 

  • Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Foelix RF, Chu-Wang IW (1973) The morphology of spider sensilla II. Chemoreceptors. Tissue Cell 5(3):461–478. https://doi.org/10.1016/S0040-8166(73)80038-2

    Article  CAS  PubMed  Google Scholar 

  • Ford MJ (1978) Locomotory activity and the predation strategy of the of the wolf-spider Pardosa amentata (Clerck) (Lycosidae). Anim Behav 26:31–35

    Article  Google Scholar 

  • Fowler HG (1981) Behavior of two myrmecophiles of Paraguayan leaf-cutting ants. Revista Chilena Entomología. Retrieved from http://www.insectachile.cl/rchen/pdfs/VOL._11_(1981)/Fowler_1981.pdf

    Google Scholar 

  • García LF, Franco V, Robledo-Ospina LE, Viera C, Lacava M, Willemart RH (2016) The predation strategy of the recluse spider Loxosceles rufipes (Lucas, 1834) against four prey species. J Insect Behav. https://doi.org/10.1007/s10905-016-9578-9

  • Gasnier TR, Azevedo CS, Torres-Sanchez MP, Hubert H (2002) Adult size of eight hunting spider species in central Amazonia: temporal variations and sexual dimorphisms. J Arachnol 30:146–154

    Article  Google Scholar 

  • Getty RM, Coyle FA (1996) Observations on prey capture and anti-predator behaviors of ogre-faced spiders (Deinopis) in southern Costa Rica (Araneae, Deinopidae). J Arachnol 24:93–100

    Google Scholar 

  • Gnaspini P (1996) Population ecology of Goniosoma spelaeum, a cavernicolous harvestman from southeastern Brazil (Arachnida: Opiliones: Gonyleptidae). J Zool 239:417–435

    Article  Google Scholar 

  • Gonçalves-Souza T, Llandres AL, Omena PM, Souza JC, Romero GQ (2008) Trait-mediated effects on flowers: artificial spiders deceive pollinators and decrease plant fitness. Ecology 89:2407–2413. https://doi.org/10.1890/07-1881.1

    Article  PubMed  Google Scholar 

  • Greenstone MH (1983) Site-specificity and site tenacity in a wolf spider : a serological dietary analysis. Oecologia 56:79–83

    Article  PubMed  Google Scholar 

  • Guseinov EFO (2006) The prey of a lithophilous crab spider Xysticus loeffleri (Araneae, Thomisidae). J Arachnol 34:37–45

    Article  Google Scholar 

  • Hebets EA, Wesson J, Shamble PS (2008) Diet influences mate choice selectivity in adult female wolf spiders. Anim Behav 76:355–363

    Article  Google Scholar 

  • Heiling AM, Herberstein ME, Chittka L (2003) Crab spiders manipulate flower signals. Nature 421:334

    Article  CAS  PubMed  Google Scholar 

  • Heiling A, Chittka L, Cheng K, Herberstein M (2005) Colouration in crab spiders: substrate choice and prey attraction. J Exp Biol 208:1785–1792

    Article  PubMed  Google Scholar 

  • Henschel JR (1994) Diet and foraging behaviour of huntsman spiders in the Namib dunes (Araneae: Heteropodidae). J Zool 34:239–251

    Article  Google Scholar 

  • Henschel JR, Ward D, Lubin YD (1992) The importance of thermal factors for nest-site selection, web construction and behaviour of Stegodyphus lineatus (Araneae: Eresidae) in the Negev Desert. J Therm Biol 17:97–106

    Article  Google Scholar 

  • Hill P (2009) How do animals use substrate-borne vibrations as an information source? Naturwissenschaften 96:1355–1371

    Article  CAS  PubMed  Google Scholar 

  • Höfer H, Brescovit A (2000) A revision of the Neotropical spider genus Ancylometes Bertkau (Araneae: Pisauridae). Insect Syst Evol 31:323–360

    Article  Google Scholar 

  • Höfer H, Brescovit AD, Gasnier T (1994) The wandering spiders of the genus Ctenus (Ctenidae: Araneae) of Reserva Ducke, a rainforest reserve in central Amazonia. Andrias 13:81–98

    Google Scholar 

  • Hostettler S, Nentwig W (2006) Olfactory information saves venom during prey-capture of the hunting spider Cupiennius salei (Araneae: Ctenidae). Funct Ecol 20:369–375

    Article  Google Scholar 

  • Humphreys WF (1978) The thermal biology of Geolycosa godeffroyi and other burrow inhabiting Lycosidae (Araneae) in Australia. Oecologia 31:319–347

    Article  CAS  PubMed  Google Scholar 

  • Humphreys WF (1987) The thermal biology of the wolf spider Lycosa tarantula (Araneae: Lycosidae) in northern Greece. Bull Br Arachnol Soc 7:117–122

    Google Scholar 

  • I-Min T, Zhang S, Tan WL, Peng P, Blamires SJ (2016) Prey-luring coloration of a nocturnal semi-aquatic predator. Ethology 122:671–681

    Article  Google Scholar 

  • Jackson RR, Pollard SD, Nelson XJ, Edwards GB, Barrion AT (2001) Jum** spiders (Araneae: Salticidae) that feed on nectar. J Zool 255:25–29. https://doi.org/10.1017/S095283690100108X

    Article  Google Scholar 

  • Jackson RR, Nelson HJ, Sune GO (2005) A spider that feeds indirectly on vertebrate blood by choosing female mosquitoes as prey. PNAS 102:15155–15160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones D, Ledoux JC, Emerit M (2001) Guide des araignées et opilions d’Europe. Delachaux and Niestle, Geneve

    Google Scholar 

  • Junker R, Bretscher S, Dötterl S, Blüthgen N (2011) Phytochemical cues affect hunting-site choices of a nursery web spider (Pisaura mirabilis) but not a crab spider (Misumena vatia). J Arachnol 39:113–117

    Article  Google Scholar 

  • Llandres AL, Rodríguez-Gironés MA (2011) Spider movement, UV reflectance and size, but not spider crypsis, affect the response of honeybees to australian crab spiders. PLoS ONE 6:e17136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubin YD, Henschel JR (1990) Foraging at the thermal limit: burrowing spiders (Seothyra, Eresidae) in the Namib Desert dunes. Oecol 84:461–467

    Article  CAS  Google Scholar 

  • Machado G, Carrera PC, Pomini AM, Marsaioli AJ (2005) Chemical defense in harvestmen (Arachnida, Opiliones): do benzoquinone secretions deter invertebrate and vertebrate predators? J Chem Ecol 31:2519–2539

    Article  CAS  PubMed  Google Scholar 

  • Malli H, Imboden H, Kuhn-Nentwig L (1998) Quantifying the venom dose of the spider Cupiennius salei using monoclonal antibodies. Toxicon 36:1959–1969

    Article  CAS  PubMed  Google Scholar 

  • Malli H, Kuhn-Nentwig L, Imboden H, Nentwig W (1999) Effects of size, motility and paralysation time of prey on the quantity of venom injected by the hunting spider Cupiennius salei. J Exp Biol 202:2083–2089

    CAS  PubMed  Google Scholar 

  • Mayntz D, Toft S (2006) Nutritional value of cannibalism and the role of starvation and nutrient imbalance for cannibalistic tendencies in a generalist predator. J Anim Ecol 75:288–297

    Article  PubMed  Google Scholar 

  • Mayntz D, Raubenheimer D, Salomon M, Toft S, Simpson SJ (2005) Nutrient-specific foraging in invertebrate predators. Science 307:111–113

    Article  CAS  PubMed  Google Scholar 

  • McConney ME, Schaber CF, Julian MD (2009) Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei). J R Soc Interface 6:81–94

    Article  Google Scholar 

  • Menin M, Rodrigues DJ, Azevedo CS (2005) Predation on amphibians by spiders (Arachnida, Araneae) in the Neotropical region. Phyllomedusa 4:39–47

    Article  Google Scholar 

  • Morse DH, Stephens EG (1996) The consequences of adult foraging success on the components of lifetime fitness in a semelparous, sit and wait predator. Evol Ecol 10:361–373

    Article  Google Scholar 

  • Moya-Laraño J (2010) Can temperature and water availability contribute to the maintenance of latitudinal diversity by increasing the rate of biotic interactions? Open Ecol J 3:1–13

    Article  Google Scholar 

  • Nelson XJ, Jackson RR (2006) A predator from east Africa that chooses malaria vectors as preferred prey. PLOS ONE Issue 1:e132

    Article  Google Scholar 

  • Nelson XJ, Jackson RR (2011) Flexibility in the foraging strategies of spiders. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, MA, pp 31–56

    Chapter  Google Scholar 

  • Nelson XJ, Jackson RR (2012) The discerning predator: decision rules underlying prey classification by a mosquito-eating jum** spider. J Exp Biol 215:2255–2261

    Article  PubMed  PubMed Central  Google Scholar 

  • Nentwig W (1985) Feeding ecology of the tropical spitting spider Scytodes Longipes (Araneae, Scytodidae). Oecologia 65:284–288

    Article  PubMed  Google Scholar 

  • Nentwig W (1986) Non-webbuilding spiders: prey specialists or generalists? Oecologia 69:571–576

    Article  PubMed  Google Scholar 

  • Nyffeler M (1999) Prey selection of spiders in the field. J Arachnol 27:317–324

    Google Scholar 

  • Nyffeler M, Knörnschild M (2013) Bat predation by spiders. PLoS One 8:e58120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyffeler M, Pusey B (2014) Fish predation by semi-aquatic spiders: a global pattern. PLoS One 9:e99459

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira PS, Sazima I (1984) The adaptive bases of ant-mimicry in a Neotropical aphantochilid spider (Araneae: Aphantochilidae). Biol J Linn Soc 22:145–155

    Article  Google Scholar 

  • Patil B, Prabhu S, Rajashekhar KP (2006) Lyriform slit sense organs on the pedipalps and spinnerets of spiders. J Biosci 31:75–84

    Article  PubMed  Google Scholar 

  • Pekár S, Haddad C (2011) Trophic strategy of ant-eating Mexcala elegans (Araneae: Salticidae): looking for evidence of evolution of prey-specialization. J Arachnol 39:133–138

    Article  Google Scholar 

  • Pekár S, Lubin Y (2009) Prey and predatory behavior of two zodariid species (Araneae, Zodariidae). J Arachnol 37:118–121

    Article  Google Scholar 

  • Persons M, Rypstra A (2001) Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. J Chem Ecol 27:2493–2504

    Article  CAS  PubMed  Google Scholar 

  • Persons M, Uetz G (1996) The influence of sensory information on patch residence time in wolf spiders (Araneae: Lycosidae). Anim Behav 51:1285–1293

    Article  Google Scholar 

  • Persons M, Uetz G (1997) The effect of prey movement on attack behavior and patch residence decision rules of wolf spiders (Araneae: Lycosidae). J Insect Behav 10:737–752

    Article  Google Scholar 

  • Persons MH, Walker SE, Rypstra AL, Marshall SD (2001) Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Anim Behav 61:43–51

    Article  PubMed  Google Scholar 

  • Pollet T, Stulp G, Groothuis T (2013) Born to win? Testing the fighting hypothesis in realistic fights: left-handedness in the ultimate fighting championship. Anim Behav 86:39–84

    Article  Google Scholar 

  • Prieur J, Pika S, Barbu S, Blois-Heulin C (2016) Gorillas are right-handed for their most frequent intraspecific gestures. Anim Behav 118:165–170

    Article  Google Scholar 

  • Reissland A, Görner P (1985) Trichobothria. In: Neurobiology of arachnids. Springer, Berlin pp 138–161

    Google Scholar 

  • Riechert SE, Luczak J (1982) Spider foraging: behavioral responses to prey. In: Witt PN, Rovner JS (eds) Spider communication: mechanisms of ecological significance. Princeton University Press, Princeton, pp 353–385

    Google Scholar 

  • Riechert SE, Tracy CR (1975) Thermal balance and prey availability: bases for a model relating web-site characteristics and spider reproductive success. Ecology 56:265–284

    Article  Google Scholar 

  • Romero GQ (2001) Experimental study of the associatio between Runcinioides argenteus (Araneae, Thomisidae) and Trichogoniopsis adenantha (DC) AsteraceaeDissertation. State University of Campinas, São Paulo

    Google Scholar 

  • Romero GQ, Vasconcellos-Neto J (2003) Natural history of Misumenops argenteus (Thomisidae): seasonality and diet on Trichogoniopsis adenantha (Asteraceae). J Arachnol 31:297–304

    Article  Google Scholar 

  • Romero GQ, Vasconcellos-Neto J (2007) Aranhas sobre plantas:dos comportamentos de forrageamento às associações específicas. In: Gonzaga MO, Santos AJ, Japyassú HF (eds) Ecologia e comportamento de aranhas. Interciência, Rio de Janeiro

    Google Scholar 

  • Romero GQ, Antiqueira PAP, Koricheva J (2011) A meta-analysis of predation risk effects on pollinator behaviour. PLoS One 6:e20689. https://doi.org/10.1371/journal.pone.0020689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenthal MF, Hebets EA (2015) Temporal patterns of nutrition dependence in secondary sexual traits and their varying impacts on male mating success. Anim Behav 103:75–82

    Article  Google Scholar 

  • Rovner JS (1980) Morphological and ethological adaptations for prey capture in wolf spiders (Araneae, Lycosidae). J Arachnol 8:201–215

    Google Scholar 

  • Rypstra AL, Samu F (2005) Size dependent intraguild predation and cannibalism in coexisting wolf spiders (Araneae, Lycosidae). J Arachnol 33:390–397

    Article  Google Scholar 

  • Rypstra AL, Schmidt JM, Reif BD (2007) Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos 116:853–863

    Article  Google Scholar 

  • Salvestrini FMD, Gasnier TR (2001) Differences in the activity of juveniles, females and males of two hunting spiders of the genus Ctenus (Araneae, Ctenidae): active males or inactive females? J Arachnol 29:276–278

    Article  Google Scholar 

  • Samu F, Toft S, Kiss B (1999) Factors influencing cannibalism in the wolf spider Pardosa agrestis (Araneae, Lycosidae). Behav Ecol Sociobiol 45:349–354

    Article  Google Scholar 

  • Sandidge JS (2003) Scavenging by brown recluse spiders. Nature 426:30

    Article  CAS  PubMed  Google Scholar 

  • Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2009) Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst 40:245–269

    Article  Google Scholar 

  • Schmalhofer VR, Casey TM (1999) Crab spider hunting performance is temperature insensitive. Ecol Entomol 24:345–353

    Article  Google Scholar 

  • Schmidt JM, Sebastian P, Wilder SM, Rypstra AL (2012) The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS One 7:e49223. https://doi.org/10.1371/journal.pone.0049223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt A, Schuster M, Barth FG (1990) Daily locomotor activity patterns in three species of Cupiennius (Araneae, Ctenidae): the males are the wandering spiders. J Arachnol 18:249–255

    Google Scholar 

  • Schonewolf K, Bell R, Rypstra A, Persons M (2006) Field evidence of an airborne enemy-avoidance kairomone in wolf spiders. J Chem Ecol 32:1565–1576

    Article  CAS  PubMed  Google Scholar 

  • Schuster M, Baurecht D, Mitter E, Schmitt A, Barth FG (1994) Field observations on the population structure of three ctenid spiders (Cupiennius, Araneae, Ctenidae). J Arachnol 22:32–38

    Google Scholar 

  • Schwartz SK, Wagner WE Jr, Hebets EA (2014) Obligate male death and sexual cannibalism in dark fishing spiders. Anim Behav 93:151–156

    Article  Google Scholar 

  • Segovia JMG, Del-Claro K, Willemart RH (2015a) Delicate fangs, smart killing: the predation strategy of the recluse spider. Anim Behav 101:169–177

    Article  Google Scholar 

  • Segovia JMG, Del-Claro K, Willemart RH (2015b) Defences of a Neotropical harvestman against different levels of threat by the recluse spider. Behaviour 152:757–773

    Article  Google Scholar 

  • Souza EDS, Willemart RH (2011) Harvest-ironman: heavy armature, and not its defensive secretions, protects a harvestman against a spider. Anim Behav 81:127–133

    Article  Google Scholar 

  • Stafstrom JA, Hebets EA (2016) Nocturnal foraging enhanced by enlarged secondary eyes in a net-casting spider. Biol Lett 12:20160152. https://doi.org/10.1098/rsbl.2016.0152

    Article  PubMed  PubMed Central  Google Scholar 

  • Suter RB, Stratton GE (2005) Scytodes vs. Schizocosa: Predatory techniques and their morphological correlates. J Arachnol 33:7–15

    Article  Google Scholar 

  • Taylor RM, Pfannenstiel RS (2009) How dietary plant nectar affects the survival, growth, and fecundity of a cursorial spider Cheiracanthium inclusum (Araneae: Miturgidae). Environ Entomol 38:1379–1386

    Article  CAS  PubMed  Google Scholar 

  • Toft S, Albo MJ (2016) The shield effect: nuptial gifts protect males against pre-copulatory sexual cannibalism. Biol Lett 12:20151082. https://doi.org/10.1098/rsbl.2015.1082

    Article  PubMed  PubMed Central  Google Scholar 

  • Tso I-M, Zhang S, Tan W-L, Peng P, Blamires SJ, Herberstein M (2016) Prey luring coloration of a nocturnal semi-aquatic predator. Ethology 122(8):671–681

    Article  Google Scholar 

  • Turner JS, Henschel JR, Lubin YD (1993) Thermal constraints on prey-capture behaviour of a burrowing spider in a hot environment. Behav Ecol Sociobiol 33:35–43

    Article  Google Scholar 

  • Vetter RS (2011) Scavenging by spiders (Araneae) and its relationship to pest management of the brown recluse spider. J Econ Entomol 104:986–989

    Article  PubMed  Google Scholar 

  • Vieira WLS, Gonçalves MBR, Nóbrega RP (2012) Predation on Tropidurus hispidus (Squamata: Tropiduridae) by Lasiodora klugi (Aranea: Theraphosidae) in the semiarid caatinga region of northeastern Brazil. Biota Neotrop 12:1–3

    Google Scholar 

  • Vollrath F, Selden P (2007) The role of behavior in the evolution of spiders, silks, and webs. Annu Rev Ecol Evol Syst 38:819–846

    Article  Google Scholar 

  • Wagner JD, Wise DH (1997) Influence of prey availability and conspecifics on patch quality for a cannibalistic forager: laboratory experiments with the wolf spider Schizocosa. Oecologia 109:474–482

    Article  CAS  PubMed  Google Scholar 

  • Walker SE, Marshall SD, Rypstra AL, Taylor DH (1999) The effects of hunger on locomotory behaviour in two species of wolf spider (Araneae, Lycosidae). Anim Behav 58:515–520

    Article  CAS  PubMed  Google Scholar 

  • Wetter MB, Wernisch B, Tof S (2012) Tests for attraction to prey and predator avoidance by chemical cues in spiders of the beech forest floor. Arachnologische Mitt 43:49–54

    Google Scholar 

  • Wigger E, Kuhn-Nentwig L, Nentwig W (2002) The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon 40:49–52

    Article  Google Scholar 

  • Willemart RH, Kaneto GE (2004) The use of retreats, mobility, and notes on the natural history of the Neotropical hunting spider Enoploctenus cyclothorax (Araneae, Ctenidae). Bull Br Arachnol Soc 13:53–59

    Google Scholar 

  • Willemart RH, Pellegatti-Franco F (2006) The spider Enoploctenus cyclothorax (Araneae: Ctenidae) avoids preying on the harvestman Mischonyx cuspidatus (Opiliones: Gonyleptidae). J Arachnol 32:649–652

    Article  Google Scholar 

  • Wise DH (2006) Cannibalism: food limitation, intraspecific competition, and the regulation of spider populations. Annu Rev Entomol 51:441–465

    Article  CAS  PubMed  Google Scholar 

  • Wrinn KM, Uetz GW (2008) Effects of autotomy and regeneration on detection and capture of prey in a generalist predator. Behav Ecol 19:1282–1288

    Article  Google Scholar 

  • Wullschleger B, Nentwig W (2002) Influence of venom availability on a spider’s prey-choice behaviour. Funct Ecol 16:802–807

    Article  Google Scholar 

  • Young SL, Chyasnavichyus M, Erko M, Barth FG, Fratzl P, Zlotnikov I, Politi Y, Tsukruk VV (2014) A spider’s biological vibration filter: micromechanical characteristics of a biomaterial surface. Acta Biomater 10:4832–4842

    Article  CAS  PubMed  Google Scholar 

  • Zina J, Gonzaga MO (2006) Aplastodiscus arildae (green tree frog) predation. Herpetol Rev 37:440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo H. Willemart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Willemart, R.H., Lacava, M. (2017). Foraging Strategies of Cursorial and Ambush Spiders. In: Viera, C., Gonzaga, M. (eds) Behaviour and Ecology of Spiders. Springer, Cham. https://doi.org/10.1007/978-3-319-65717-2_9

Download citation

Publish with us

Policies and ethics

Navigation