Color Lie Bialgebras: Big Bracket, Cohomology and Deformations

  • Conference paper
  • First Online:
Geometric and Harmonic Analysis on Homogeneous Spaces and Applications (TJC 2015)

Abstract

The main purpose of this paper is first to summarize the basics on color Lie bialgebras and then construct a big bracket which is used to define explicitly a cohomology complex and study deformations of color Lie bialgebras. Moreover, we provide some classification results and examples of cohomology computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdaoui, K., Ammar, F., Makhlouf, A.: Constructions and cohomology of Hom-Lie color algebras. Commun. Algebra 43(11), 4581–4612 (2015)

    Article  MathSciNet  Google Scholar 

  2. Andruskiewitsch, N.: Lie superbialgebras and Poisson-Lie supergroups. Abh. Math. Sem. Univ. Hamburg 63, 147–163 (1993)

    Article  MathSciNet  Google Scholar 

  3. Bahturin, Y., Kochetov, M.: Classification of group gradings on simple Lie algebras of types A, B, C and D. J. Algebra 324, 2971–2989 (2010)

    Article  MathSciNet  Google Scholar 

  4. Belavin, A., Drinfeld, V.: Triangle equations and simple Lie algebras. Sov. Sci. Rev. Sect. C 4, 93–165 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Bergen, J., Passman, D.S.: Delta ideal of Lie color algebras. J. Algebra 177, 740–754 (1995)

    Article  MathSciNet  Google Scholar 

  6. Chen, X.-W., Silvestrov, S.D., Van Oystaeyen, F.: Representations and cocycle twists of color Lie algebras. Algebras and Representations Theory 17(9), 633–650 (2006)

    Article  MathSciNet  Google Scholar 

  7. Drinfeld, V.G.: Hamiltonian Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equation. Sov. Math. Dokl. 27(1), 68–71 (1983)

    Google Scholar 

  8. Drinfeld, V.G.: Quasi-Hopf algebras. Algebra i Analiz 1(6), 114–148 (1989)

    MathSciNet  Google Scholar 

  9. Eghbali, A., Rezaei-Aghdam, A., Heidarpour, F.: Classification of two and three dimensional Lie superbialgebras. J. Math. Phys. 51(7), 073503 (2010)

    Article  MathSciNet  Google Scholar 

  10. Enriquez, B., Halbout, G.: Quantization of \(\Gamma \)-Lie bialgebras. J. Algebra 319(9), 3752–3769 (2008)

    Article  MathSciNet  Google Scholar 

  11. Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras, I. Selecta Math. (N.S.) 2(1), 1–41 (1996)

    Article  MathSciNet  Google Scholar 

  12. Feldvoss, J.: Representations of Lie colour algebras. Adv. Math. 157, 95–137 (2001)

    Article  MathSciNet  Google Scholar 

  13. Feldvoss, J.: Existence of triangular Lie bialgebra structures. II. J. Pure Appl. Algebra 198(1–3), 151–163 (2005)

    Article  MathSciNet  Google Scholar 

  14. Geer, N.: Etingof-Kazhdan quantization of Lie superbialgebras. Adv. Math. 207(1), 1–38 (2006)

    Article  MathSciNet  Google Scholar 

  15. Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79, 59–103 (1964)

    Article  MathSciNet  Google Scholar 

  16. Hofer, L.: Aspects algébriques et quantification des surfaces minimales. Ph.D. Université de Haute Alsace (2006)

    Google Scholar 

  17. Karaali, G.: Constructing \(r\)-Matrices on simple Lie superalgebras. J. Algebra 282, 83–102 (2004)

    Article  MathSciNet  Google Scholar 

  18. Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups. Contemp. Math. Amer. Math. Soc. 132, 459–489 (1992)

    Article  MathSciNet  Google Scholar 

  19. Kosmann-Schwarzbach, Y.: Lie bialgebras, Poisson Lie groups and dressing transformations. In: Integrability of Nonlinear Systems, 2nd edn. Lecture Notes in Physics 638, pp. 107–173. Springer, Berlin (2004)

    Chapter  Google Scholar 

  20. Kosmann-Schwarzbach, Y., Magri, F.: Poisson-Lie groups and complete integrability. I. Drinfeld bialgebras, dual extensions and their canonical representations. Ann. Inst. H. Poincaré Phys. Théor. 49(4), 433–460 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Lecomte, P.B.A., Roger, C.: Modules et cohomologie des bigèbres de Lie. C. R. Acad. Sci. Paris Sér. I Math. 310, 405–410 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Montaner, F., Stolin, A., Zelmanov, E.: Classification of Lie bialgebras over current algebras. Selecta Math. (N.S.) 16(4), 935–962 (2010)

    Article  MathSciNet  Google Scholar 

  23. Nijenhuis, A., Richardson, R.W.: Deformation of homomorphisms of Lie group and Lie algebras. Bull. Am. Math. Soc. 73, 175–179 (1967)

    Article  MathSciNet  Google Scholar 

  24. Pop, H.C.: A generalization of Scheunert’s Theorem on cocycle twisting of color Lie algebras. ar**v:9703002 (1997)

  25. Qingcheng, Z., Yongzheng, Z.: Derivations and extensions of Lie color algebra. Acta Math. Sci. 28, 933–948 (2008)

    Article  MathSciNet  Google Scholar 

  26. Rittenberg, V., Wyler, D.: Generalized superalgebras. Nucl. Phys. B 139, 189–202 (1978)

    Article  MathSciNet  Google Scholar 

  27. Rittenberg, V., Wyler, D.: Sequences of graded \(\mathbb{Z}\otimes \mathbb{Z}\) Lie algebras and superalgebras. J. Math. Phys. 19, 2193–2200 (1978)

    Article  MathSciNet  Google Scholar 

  28. Semenov-Tian-Shansky, M.A.: What is a classical r-matrix? Funct. Anal. Appl. 17(4), 259–272 (1983)

    Article  Google Scholar 

  29. Scheunert, M.: The Theory of Lie Superalgebras: An Introduction. Springer, Berlin (1979)

    Book  Google Scholar 

  30. Scheunert, M.: Generalized Lie algebras. J. Math. Phys. 20, 712–720 (1979)

    Article  MathSciNet  Google Scholar 

  31. Scheunert, M., Zhang, R.B.: Cohomology of Lie superalgebras and their generalizations. J. Math. Phys. 39(9), 5024–5061 (1998)

    Article  MathSciNet  Google Scholar 

  32. Scheunert, M.: Graded tensor calculus. J. Math. Phys. 24, 26–58 (1983)

    MathSciNet  MATH  Google Scholar 

  33. Silvestrov, S.D.: On the classification of 3-dimensional coloured Lie algebras. Quantum Groups and Quantum Spaces, vol. 40, pp. 159–170. Banach Center and Publications (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Hurle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hurle, B., Makhlouf, A. (2017). Color Lie Bialgebras: Big Bracket, Cohomology and Deformations. In: Baklouti, A., Nomura, T. (eds) Geometric and Harmonic Analysis on Homogeneous Spaces and Applications. TJC 2015. Springer Proceedings in Mathematics & Statistics, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-65181-1_3

Download citation

Publish with us

Policies and ethics

Navigation