Neurodevelopmental Effects of Serotonin on the Brainstem Respiratory Network

  • Chapter
  • First Online:
The Plastic Brain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1015))

Abstract

Serotonin has multiple roles during development of the nervous system. Human pathologies, mouse genetic models, and pharmacological experiments have demonstrated a role of serotonin in the development of neural networks. Here we summarize evidence showing that serotonin is important for the brainstem respiratory network. The available data highlight the role of serotonin as a developmental signal that previously has not been specifically considered for the respiratory network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HT:

5-hydroxytryptamine, serotonin

5-HTergic:

Serotonergic

5-HTP:

5-hydroxytryptophan

5-HTR:

Serotonin receptors

BDNF:

Brain-derived neurotrophic factor

E:

Embryonic day

KO:

Knock out

MAO-A:

Monoamine oxidase A

NTS:

Nucleus tractus solitarii

P:

Postnatal day

PCPA:

Para-chlorophenylalanine

pFRG:

Parafacial respiratory group

preBötC:

preBötzinger complex

RPG:

Respiratory pattern generator

RTN:

Retrotrapezoid nucleus

SERT:

Serotonin transporter

SIDS:

Sudden infant death syndrome

SSRIs:

Selective serotonin reuptake inhibitors

TPH:

Tryptophan hydroxylase

Trp:

Tryptophan

VMAT:

Vesicular monoamine transporter

XII:

Hypoglossal nucleus

References

  • Aitken AR, Tork I (1988) Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of the fetal rat brain. J Comp Neurol 274(1):32–47. doi:10.1002/cne.902740105

    Article  CAS  PubMed  Google Scholar 

  • Alenina N, Bashammakh S, Bader M (2006) Specification and differentiation of serotonergic neurons. Stem Cell Rev 2(1):5–10. doi:10.1007/s12015-006-0002-2

    Article  CAS  PubMed  Google Scholar 

  • Alenina N, Kikic D, Todiras M, Mosienko V, Qadri F, Plehm R, Boye P, Vilianovitch L, Sohr R, Tenner K, Hortnagl H, Bader M (2009) Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc Natl Acad Sci U S A 106(25):10332–10337. doi:10.1073/pnas.0810793106. 0810793106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez C, Vitalis T, Fon EA, Hanoun N, Hamon M, Seif I, Edwards R, Gaspar P, Cases O (2002) Effects of genetic depletion of monoamines on somatosensory cortical development. Neuroscience 115(3):753–764

    Google Scholar 

  • Alwan S, Friedman JM (2009) Safety of selective serotonin reuptake inhibitors in pregnancy. CNS Drugs 23(6):493–509. doi:10.2165/00023210-200923060-00004

    Article  CAS  PubMed  Google Scholar 

  • Angulo MA, Butler MG, Cataletto ME (2015) Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Investig 38(12):1249–1263. doi:10.1007/s40618-015-0312-9. 10.1007/s40618-015-0312-9

    Article  CAS  Google Scholar 

  • Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306(5697):879–881. doi:10.1126/science.1101678

  • Bervini S, Herzog H (2013) Mouse models of Prader-Willi syndrome: a systematic review. Front Neuroendocrinol 34(2):107–119. doi:10.1016/j.yfrne.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  • Bonnin A, Levitt P (2011) Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience 197:1–7. doi:10.1016/j.neuroscience.2011.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bou-Flores C, Lajard AM, Monteau R, De Maeyer E, Seif I, Lanoir J, Hilaire G (2000) Abnormal phrenic motoneuron activity and morphology in neonatal monoamine oxidase A-deficient transgenic mice: possible role of a serotonin excess. J Neurosci 20(12):4646–4656

    CAS  PubMed  Google Scholar 

  • Brady JP, McCann EM (1985) Control of ventilation in subsequent siblings of victims of sudden infant death syndrome. J Pediatr 106(2):212–217

    Google Scholar 

  • Brandes IF, Zuperku EJ, Stucke AG, Jakovcevic D, Hopp FA, Stuth EA (2006) Serotonergic modulation of inspiratory hypoglossal motoneurons in decerebrate dogs. J Neurophysiol 95(6):3449–3459. doi:10.1152/jn.00823.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bras H, Gaytan SP, Portalier P, Zanella S, Pasaro R, Coulon P, Hilaire G (2008) Prenatal activation of 5-HT2A receptor induces expression of 5-HT1B receptor in phrenic motoneurons and alters the organization of their premotor network in newborn mice. Eur J Neurosci 28(6):1097–1107. doi:10.1111/j.1460-9568.2008.06407.x. EJN6407 [pii]

    Article  PubMed  Google Scholar 

  • Bravo K, Eugenín J, Llona I (2016) Perinatal fluoxetine exposure impairs CO2 chemoreflex: implications for sudden infant death syndrome. Am J Respir Cell Mol Biol 55(3):368–376

    Google Scholar 

  • Burnet H, Bevengut M, Chakri F, Bou-Flores C, Coulon P, Gaytan S, Pasaro R, Hilaire G (2001) Altered respiratory activity and respiratory regulations in adult monoamine oxidase A-deficient mice. J Neurosci 21(14):5212–5221. 21/14/5212 [pii]

    CAS  PubMed  Google Scholar 

  • Cann-Moisan C, Girin E, Giroux JD, Le Bras P, Caroff J (1999) Changes in cerebrospinal fluid monoamine metabolites, tryptophan, and gamma-aminobutyric acid during the 1st year of life in normal infants. Comparison with victims of sudden infant death syndrome. Biol Neonate 75(3):152–159. 14091 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cases O, Lebrand C, Giros B, Vitalis T, De Maeyer E, Caron MG, Price DJ, Gaspar P, Seif I (1998) Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the develo** brain of monoamine oxidase A knock-outs. J Neurosci 18(17):6914–6927

    CAS  PubMed  Google Scholar 

  • Cayetanot F, Gros F, Larnicol N (2001) 5-HT(2A/2C) receptor-mediated hypopnea in the newborn rat: relationship to Fos immunoreactivity. Pediatr Res 50(5):596–603. doi:10.1203/00006450-200111000-00011

    Article  CAS  PubMed  Google Scholar 

  • Cazalets JR, Gardette M, Hilaire G (2000) Locomotor network maturation is transiently delayed in the MAOA-deficient mouse. J Neurophysiol 83(4):2468–2470

    CAS  PubMed  Google Scholar 

  • Coates EL, Li A, Nattie EE (1993) Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol (1985) 75(1):5–14

    CAS  Google Scholar 

  • Coddou C, Bravo E, Eugenin J (2009) Alterations in cholinergic sensitivity of respiratory neurons induced by pre-natal nicotine: a mechanism for respiratory dysfunction in neonatal mice. Philos Trans R Soc Lond B Biol Sci 364(1529):2527–2535. doi:10.1098/rstb.2009.0078. 364/1529/2527 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corcoran AE, Commons KG, Wu Y, Smith JC, Harris MB, Richerson GB (2014) Dual effects of 5-HT(1a) receptor activation on breathing in neonatal mice. J Neurosci 34(1):51–59. doi:10.1523/JNEUROSCI.0864-13.2014. 34/1/51 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes SP (2005) Molecular genetics of the early development of hindbrain serotonergic neurons. Clin Genet 68(6):487–494. doi:10.1111/j.1399-0004.2005.00534.x. CGE534 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Côté F, Fligny C, Bayard E, Launay JM, Gershon MD, Mallet J, Vodjdani G (2007) Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci U S A 104(1):329–334. doi:10.1073/pnas.0606722104

    Article  PubMed  Google Scholar 

  • Covenas R, Marcos P, Belda M, de Leon M, Narvaez JA, Aguirre JA, Gonzalez-Baron S (2001) Neuropeptides in the raphe nuclei: an immunocytochemical study. Rev Neurol 33(2):131–137

    CAS  PubMed  Google Scholar 

  • Dai JX, Hu ZL, Shi M, Guo C, Ding YQ (2008) Postnatal ontogeny of the transcription factor Lmx1b in the mouse central nervous system. J Comp Neurol 509(4):341–355. doi:10.1002/cne.21759

  • Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20(7):398–399

    Article  CAS  PubMed  Google Scholar 

  • Deneris ES (2011) Molecular genetics of mouse serotonin neurons across the lifespan. Neuroscience 197:17–27. doi:10.1016/j.neuroscience.2011.08.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depuy SD, Kanbar R, Coates MB, Stornetta RL, Guyenet PG (2011) Control of breathing by raphe obscurus serotonergic neurons in mice. J Neurosci 31(6):1981–1990. doi:10.1523/JNEUROSCI.4639-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Pasquale E, Tell F, Monteau R, Hilaire G (1996) Perinatal developmental changes in respiratory activity of medullary and spinal neurons: an in vitro study on fetal and newborn rats. Brain Res Dev Brain Res 91(1):121–130

    Article  PubMed  Google Scholar 

  • Ding YQ, Marklund U, Yuan W, Yin J, Wegman L, Ericson J, Deneris E, Johnson RL, Chen ZF (2003) Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci 6(9):933–938. doi:10.1038/nn1104

    Article  CAS  PubMed  Google Scholar 

  • Doi A, Ramirez JM (2008) Neuromodulation and the orchestration of the respiratory rhythm. Respir Physiol Neurobiol 164(1–2):96–104. doi:10.1016/j.resp.2008.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas RM, Trouth CO, James SD, Sexcius LM, Kc P, Dehkordi O, Valladares ER, McKenzie JC (2001) Decreased CSF pH at ventral brain stem induces widespread c-Fos immunoreactivity in rat brain neurons. J Appl Physiol (1985) 90(2):475–485

    CAS  Google Scholar 

  • Dreshaj IA, Haxhiu MA, Martin RJ (1998) Role of the medullary raphe nuclei in the respiratory response to CO2. Respir Physiol 111(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Duncan JR, Paterson DS, Hoffman JM, Mokler DJ, Borenstein NS, Belliveau RA, Krous HF, Haas EA, Stanley C, Nattie EE, Trachtenberg FL, Kinney HC (2010) Brainstem serotonergic deficiency in sudden infant death syndrome. JAMA 303(5):430–437. doi:10.1001/jama.2010.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci U S A 93(10):5166–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson JT, Shafer G, Rossetti MD, Wilson CG, Deneris ES (2007) Arrest of 5HT neuron differentiation delays respiratory maturation and impairs neonatal homeostatic responses to environmental challenges. Respir Physiol Neurobiol 159(1):85–101. doi:10.1016/j.resp.2007.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Eugenin J, Ampuero E, Infante CD, Silva E, Llona I (2003) pH sensitivity of spinal cord rhythm in fetal mice in vitro. Adv Exp Med Biol 536:535–539

    Article  PubMed  Google Scholar 

  • Fabre V, Beaufour C, Evrard A, Rioux A, Hanoun N, Lesch KP, Murphy DL, Lanfumey L, Hamon M, Martres MP (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12(7):2299–2310

    Article  CAS  PubMed  Google Scholar 

  • Feldman JL, Mitchell GS, Nattie EE (2003) Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 26:239–266. doi:10.1146/annurev.neuro.26.041002.131103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman JL, Del Negro CA, Gray PA (2013) Understanding the rhythm of breathing: so near, yet so far. Annu Rev Physiol 75:423–452. doi:10.1146/annurev-physiol-040510-130049

    Article  CAS  PubMed  Google Scholar 

  • Flores-Cruz GM, Escobar A (2012) Reduction of serotonergic neurons in the dorsal raphe due to chronic prenatal administration of a tryptophan-free diet. Int J Dev Neurosci 30(2):63–67. doi:10.1016/j.ijdevneu.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  • Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19(6):1271–1283

    Google Scholar 

  • Fox SR, Deneris ES (2012) Engrailed is required in maturing serotonin neurons to regulate the cytoarchitecture and survival of the dorsal raphe nucleus. J Neurosci 32(23):7832–7842. doi:10.1523/JNEUROSCI.5829-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4(12):1002–1012. doi:10.1038/nrn1256

    Article  CAS  PubMed  Google Scholar 

  • Gentile S (2015) Prenatal antidepressant exposure and the risk of autism spectrum disorders in children. Are we looking at the fall of gods? J Affect Disord 182:132–137. doi:10.1016/j.jad.2015.04.048

    Article  CAS  PubMed  Google Scholar 

  • Gentile S, Galbally M (2011) Prenatal exposure to antidepressant medications and neurodevelopmental outcomes: a systematic review. J Affect Disord 128(1–2):1–9. doi:10.1016/j.jad.2010.02.125

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez EM, Penedo LA, Oliveira-Silva P, Campello-Costa P, Guedes RC, Serfaty CA (2008) Neonatal tryptophan dietary restriction alters development of retinotectal projections in rats. Exp Neurol 211(2):441–448. doi:10.1016/j.expneurol.2008.02.009

    Article  CAS  PubMed  Google Scholar 

  • Goridis C, Brunet JF (2010) Central chemoreception: lessons from mouse and human genetics. Respir Physiol Neurobiol 173(3):312–321. doi:10.1016/j.resp.2010.03.014

    Article  CAS  PubMed  Google Scholar 

  • Gutknecht L, Waider J, Kraft S, Kriegebaum C, Holtmann B, Reif A, Schmitt A, Lesch KP (2008) Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J Neural Transm (Vienna) 115(8):1127–1132. doi:10.1007/s00702-008-0096-6

    Article  CAS  Google Scholar 

  • Gutknecht L, Kriegebaum C, Waider J, Schmitt A, Lesch KP (2009) Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice. Eur Neuropsychopharmacol 19(4):266–282. doi:10.1016/j.euroneuro.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  • Hansson SR, Mezey E, Hoffman BJ (1999) Serotonin transporter messenger RNA expression in neural crest-derived structures and sensory pathways of the develo** rat embryo. Neuroscience 89(1):243–265

    Article  CAS  PubMed  Google Scholar 

  • Hendricks T, Francis N, Fyodorov D, Deneris ES (1999) The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci 19(23):10348–10356

    CAS  PubMed  Google Scholar 

  • Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37(2):233–247

    Article  CAS  PubMed  Google Scholar 

  • Hilaire G, Morin D, Lajard AM, Monteau R (1993) Changes in serotonin metabolism may elicit obstructive apnoea in the newborn rat. J Physiol 466:367–381

    Google Scholar 

  • Hodges MR, Richerson GB (2008) Contributions of 5-HT neurons to respiratory control: neuromodulatory and trophic effects. Respir Physiol Neurobiol 164(1–2):222–232. doi:10.1016/j.resp.2008.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges MR, Tattersall GJ, Harris MB, McEvoy SD, Richerson DN, Deneris ES, Johnson RL, Chen ZF, Richerson GB (2008) Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci 28(10):2495–2505. doi:10.1523/JNEUROSCI.4729-07.2008

    Article  CAS  PubMed  Google Scholar 

  • Hodges MR, Echert AE, Puissant MM, Mouradian GC Jr (2013) Fluoxetine augments ventilatory CO2 sensitivity in Brown Norway but not Sprague Dawley rats. Respir Physiol Neurobiol 186(2):221–228. doi:10.1016/j.resp.2013.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges MR, Wehner M, Aungst J, Smith JC, Richerson GB (2009) Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development. J Neurosci 29(33):10341–10349. doi:10.1523/JNEUROSCI.1963-09.2009

  • Holtman JR Jr, Dick TE, Berger AJ (1986) Involvement of serotonin in the excitation of phrenic motoneurons evoked by stimulation of the raphe obscurus. J Neurosci 6(4):1185–1193

    PubMed  Google Scholar 

  • Homberg JR, Schubert D, Gaspar P (2010) New perspectives on the neurodevelopmental effects of SSRIs. Trends Pharmacol Sci 31(2):60–65. doi:10.1016/j.tips.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  • Hosogai M, Matsuo S, Sibahara T, Kawai Y (1998) Projection of respiratory neurons in rat medullary raphe nuclei to the phrenic nucleus. Respir Physiol 112(1):37–50

    Article  CAS  PubMed  Google Scholar 

  • Isoda K, Morimoto M, Matsui F, Hasegawa T, Tozawa T, Morioka S, Chiyonobu T, Nishimura A, Yoshimoto K, Hosoi H (2010) Postnatal changes in serotonergic innervation to the hippocampus of methyl-CpG-binding protein 2-null mice. Neuroscience 165(4):1254–1260. doi:10.1016/j.neuroscience.2009.11.036

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72(1):165–229

    CAS  PubMed  Google Scholar 

  • Julu PO, Kerr AM, Apartopoulos F, Al-Rawas S, Engerstrom IW, Engerstrom L, Jamal GA, Hansen S (2001) Characterisation of breathing and associated central autonomic dysfunction in the Rett disorder. Arch Dis Child 85(1):29–37

    Google Scholar 

  • Kadhim H, Kahn A, Sebire G (2003) Distinct cytokine profile in SIDS brain: a common denominator in a multifactorial syndrome? Neurology 61(9):1256–1259

    Google Scholar 

  • Katz DM, Dutschmann M, Ramirez JM, Hilaire G (2009) Breathing disorders in Rett syndrome: progressive neurochemical dysfunction in the respiratory network after birth. Respir Physiol Neurobiol 168(1–2):101–108. doi:10.1016/j.resp.2009.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepser LJ, Homberg JR (2015) The neurodevelopmental effects of serotonin: a behavioural perspective. Behav Brain Res 277:3–13. doi:10.1016/j.bbr.2014.05.022

    Article  CAS  PubMed  Google Scholar 

  • Kinney HC (2009) Brainstem mechanisms underlying the sudden infant death syndrome: evidence from human pathologic studies. Dev Psychobiol 51(3):223–233. doi:10.1002/dev.20367

    Article  CAS  PubMed  Google Scholar 

  • Kinney HC, Thach BT (2009) The sudden infant death syndrome. N Engl J Med 361(8):795–805. doi:10.1056/NEJMra0803836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney HC, Filiano JJ, White WF (2001) Medullary serotonergic network deficiency in the sudden infant death syndrome: review of a 15-year study of a single dataset. J Neuropathol Exp Neurol 60(3):228–247

    Article  CAS  PubMed  Google Scholar 

  • Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N (2013) Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci 33(19):8270–8275. doi:10.1523/JNEUROSCI.5855-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Lalley PM (1986) Serotoninergic and non-serotoninergic responses of phrenic motoneurones to raphe stimulation in the cat. J Physiol 380:373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalley PM, Benacka R, Bischoff AM, Richter DW (1997) Nucleus raphe obscurus evokes 5-HT-1A receptor-mediated modulation of respiratory neurons. Brain Res 747(1):156–159

    Article  CAS  PubMed  Google Scholar 

  • Lanoir J, Hilaire G, Seif I (2006) Reduced density of functional 5-HT1A receptors in the brain, medulla and spinal cord of monoamine oxidase-A knockout mouse neonates. J Comp Neurol 495(5):607–623. doi:10.1002/cne.20916

    Article  CAS  PubMed  Google Scholar 

  • Lebrand C, Cases O, Adelbrecht C, Doye A, Alvarez C, El Mestikawy S, Seif I, Gaspar P (1996) Transient uptake and storage of serotonin in develo** thalamic neurons. Neuron 17(5):823–835

    Article  CAS  PubMed  Google Scholar 

  • Li A, Nattie E (2008) Serotonin transporter knockout mice have a reduced ventilatory response to hypercapnia (predominantly in males) but not to hypoxia. J Physiol 586(9):2321–2329. doi:10.1113/jphysiol.2008.152231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay AD, Feldman JL (1993) Modulation of respiratory activity of neonatal rat phrenic motoneurones by serotonin. J Physiol 461:213–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lira A, Zhou M, Castanon N, Ansorge MS, Gordon JA, Francis JH, Bradley-Moore M, Lira J, Underwood MD, Arango V, Kung HF, Hofer MA, Hen R, Gingrich JA (2003) Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 54(10):960–971

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wong-Riley MT (2010a) Postnatal changes in the expressions of serotonin 1A, 1B, and 2A receptors in ten brain stem nuclei of the rat: implication for a sensitive period. Neuroscience 165(1):61–78. doi:10.1016/j.neuroscience.2009.09.078

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wong-Riley MT (2010b) Postnatal changes in tryptophan hydroxylase and serotonin transporter immunoreactivity in multiple brainstem nuclei of the rat: implications for a sensitive period. J Comp Neurol 518(7):1082–1097. doi:10.1002/cne.22265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wei L, Laskin DL, Fanburg BL (2011) Role of protein transamidation in serotonin-induced proliferation and migration of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 44(4):548–555. doi:10.1165/rcmb.2010-0078OC

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tian H, Yan X, Fan F, Wang W, Han J (2013) Serotonin inhibits apoptosis of pulmonary artery smooth muscle cells through 5-HT2A receptors involved in the pulmonary artery remodeling of pulmonary artery hypertension. Exp Lung Res 39(2):70–79. doi:10.3109/01902148.2012.758191

    Article  PubMed  CAS  Google Scholar 

  • Manaker S, Tischler LJ (1993) Origin of serotoninergic afferents to the hypoglossal nucleus in the rat. J Comp Neurol 334(3):466–476. doi:10.1002/cne.903340310

    Article  CAS  PubMed  Google Scholar 

  • Manzke T, Guenther U, Ponimaskin EG, Haller M, Dutschmann M, Schwarzacher S, Richter DW (2003) 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 301(5630):226–229. doi:10.1126/science.1084674

    Article  CAS  PubMed  Google Scholar 

  • Manzke H, Lehmann K, Klopocki E, Caliebe A (2008) Catel-Manzke syndrome: two new patients and a critical review of the literature. Eur J Med Genet 51(5):452–465. doi:10.1016/j.ejmg.2008.03.005

    Article  PubMed  Google Scholar 

  • Massey CA, Kim G, Corcoran AE, Haynes RL, Paterson DS, Cummings KJ, Dymecki SM, Richerson GB, Nattie EE, Kinney HC, Commons KG (2013) Development of brainstem 5-HT1A receptor-binding sites in serotonin-deficient mice. J Neurochem 126(6):749–757. doi:10.1111/jnc.12311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews TA, Fedele DE, Coppelli FM, Avila AM, Murphy DL, Andrews AM (2004) Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140(1–2):169–181. doi:10.1016/j.jneumeth.2004.05.017

    Article  CAS  PubMed  Google Scholar 

  • Maurizi CP (1985) Could supplementary dietary tryptophan and taurine prevent epileptic seizures? Med Hypotheses 18(4):411–415

    Article  CAS  PubMed  Google Scholar 

  • McCrimmon DR, Lalley PM (1982) Inhibition of respiratory neural discharges by clonidine and 5-hydroxytryptophan. J Pharmacol Exp Ther 222(3):771–777

    CAS  PubMed  Google Scholar 

  • Mejia JM, Ervin FR, Baker GB, Palmour RM (2002) Monoamine oxidase inhibition during brain development induces pathological aggressive behavior in mice. Biol Psychiatry 52(8):811–821

    Google Scholar 

  • Migliarini S, Pacini G, Pelosi B, Lunardi G, Pasqualetti M (2013) Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation. Mol Psychiatry 18(10):1106–1118. doi:10.1038/mp.2012.128

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JB, Betito K, Rowe W, Boksa P, Meaney MJ (1992) Serotonergic regulation of type II corticosteroid receptor binding in hippocampal cell cultures: evidence for the importance of serotonin-induced changes in cAMP levels. Neuroscience 48(3):631–639

    Article  CAS  PubMed  Google Scholar 

  • Morin D, Hennequin S, Monteau R, Hilaire G (1990) Serotonergic influences on central respiratory activity: an in vitro study in the newborn rat. Brain Res 535(2):281–287

    Article  CAS  PubMed  Google Scholar 

  • Murrin LC, Sanders JD, Bylund DB (2007) Comparison of the maturation of the adrenergic and serotonergic neurotransmitter systems in the brain: implications for differential drug effects on juveniles and adults. Biochem Pharmacol 73(8):1225–1236. doi:10.1016/j.bcp.2007.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narboux-Neme N, Sagne C, Doly S, Diaz SL, Martin CB, Angenard G, Martres MP, Giros B, Hamon M, Lanfumey L, Gaspar P, Mongeau R (2011) Severe serotonin depletion after conditional deletion of the vesicular monoamine transporter 2 gene in serotonin neurons: neural and behavioral consequences. Neuropsychopharmacology 36(12):2538–2550. doi:10.1038/npp.2011.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narboux-Neme N, Angenard G, Mosienko V, Klempin F, Pitychoutis PM, Deneris E, Bader M, Giros B, Alenina N, Gaspar P (2013) Postnatal growth defects in mice with constitutive depletion of central serotonin. ACS Chem Neurosci 4(1):171–181. doi:10.1021/cn300165x

    Article  CAS  PubMed  Google Scholar 

  • Nattie E, Li A (2010) Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. J Appl Physiol (1985) 108(5):1417–1424. doi:10.1152/japplphysiol.01261.2009

    Article  CAS  Google Scholar 

  • Oberlander TF, Gingrich JA, Ansorge MS (2009) Sustained neurobehavioral effects of exposure to SSRI antidepressants during development: molecular to clinical evidence. Clin Pharmacol Ther 86(6):672–677. doi:10.1038/clpt.2009.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson EB Jr, Dempsey JA, McCrimmon DR (1979) Serotonin and the control of ventilation in awake rats. J Clin Invest 64(2):689–693. doi:10.1172/JCI109510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson DS, Hilaire G, Weese-Mayer DE (2009) Medullary serotonin defects and respiratory dysfunction in sudden infant death syndrome. Respir Physiol Neurobiol 168(1-2):133–143. doi:10.1016/j.resp.2009.05.010

  • Paterson DS, Thompson EG, Belliveau RA, Antalffy BA, Trachtenberg FL, Armstrong DD, Kinney HC (2005) Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett syndrome: potential implications for clinical autonomic dysfunction. J Neuropathol Exp Neurol 64(11):1018–1027

    Article  CAS  PubMed  Google Scholar 

  • Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC (2006) Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA 296(17):2124–2132. doi:10.1001/jama.296.17.2124

    Article  CAS  PubMed  Google Scholar 

  • Peever JH, Duffin J (2001) Respiratory control of hypoglossal motoneurons. Adv Exp Med Biol 499:101–106

    Article  CAS  PubMed  Google Scholar 

  • Pena F, Ramirez JM (2002) Endogenous activation of serotonin-2A receptors is required for respiratory rhythm generation in vitro. J Neurosci 22(24):11055–11064

    CAS  PubMed  Google Scholar 

  • Penatti E, Barina A, Schram K, Li A, Nattie E (2011) Serotonin transporter null male mouse pups have lower ventilation in air and 5% CO2 at postnatal ages P15 and P25. Respir Physiol Neurobiol 177(1):61–65. doi:10.1016/j.resp.2011.02.006

  • Persico AM, Mengual E, Moessner R, Hall FS, Revay RS, Sora I, Arellano J, DeFelipe J, Gimenez-Amaya JM, Conciatori M, Marino R, Baldi A, Cabib S, Pascucci T, Uhl GR, Murphy DL, Lesch KP, Keller F (2001) Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci 21(17):6862–6873

    CAS  PubMed  Google Scholar 

  • Popova NK, Naumenko VS, Plyusnina IZ (2007) Involvement of brain serotonin 5-HT1A receptors in genetic predisposition to aggressive behavior. Neurosci Behav Physiol 37(6):631–635. doi:10.1007/s11055-007-0062-z

    Article  CAS  PubMed  Google Scholar 

  • Ptak K, Yamanishi T, Aungst J, Milescu LS, Zhang R, Richerson GB, Smith JC (2009) Raphe neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. J Neurosci 29(12):3720–3737. doi:10.1523/JNEUROSCI.5271-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanantsoa N, Hirsch MR, Thoby-Brisson M, Dubreuil V, Bouvier J, Ruffault PL, Matrot B, Fortin G, Brunet JF, Gallego J, Goridis C (2011) Breathing without CO(2) chemosensitivity in conditional Phox2b mutants. J Neurosci 31(36):12880–12888. doi:10.1523/JNEUROSCI.1721-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Ramirez JM, Ward CS, Neul JL (2013) Breathing challenges in Rett syndrome: lessons learned from humans and animal models. Respir Physiol Neurobiol 189(2):280–287. doi:10.1016/j.resp.2013.06.022

    Article  PubMed  Google Scholar 

  • Real C, Popa D, Seif I, Callebert J, Launay JM, Adrien J, Escourrou P (2007) Sleep apneas are increased in mice lacking monoamine oxidase A. Sleep 30(10):1295–1302

    Article  PubMed  PubMed Central  Google Scholar 

  • Rekling JC, Funk GD, Bayliss DA, Dong XW, Feldman JL (2000) Synaptic control of motoneuronal excitability. Physiol Rev 80(2):767–852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richerson GB (2004) Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5(6):449–461. doi:10.1038/nrn1409

    Article  CAS  PubMed  Google Scholar 

  • Richter DW, Smith JC (2014) Respiratory rhythm generation in vivo. Physiology (Bethesda) 29(1):58–71. doi:10.1152/physiol.00035.2013

    CAS  PubMed Central  Google Scholar 

  • Riederer P, Brucke T, Sofic E, Kienzl E, Schnecker K, Schay V, Kruzik P, Killian W, Rett A (1985) Neurochemical aspects of the Rett syndrome. Brain and Development 7(3):351–360

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Weiser M, Wichart I, Schmidt B, Killian W, Rett A (1986) Preliminary brain autopsy findings in progredient Rett syndrome. Am J Med Genet Suppl 1:305–315

    Article  CAS  PubMed  Google Scholar 

  • Roux JC, Panayotis N, Dura E, Villard L (2010) Progressive noradrenergic deficits in the locus coeruleus of Mecp2 deficient mice. J Neurosci Res 88(7):1500–1509. doi:10.1002/jnr.22312

  • Salichon N, Gaspar P, Upton AL, Picaud S, Hanoun N, Hamon M, De Maeyer E, Murphy DL, Mossner R, Lesch KP, Hen R, Seif I (2001) Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J Neurosci 21(3):884–896

    CAS  PubMed  Google Scholar 

  • Savelieva KV, Zhao S, Pogorelov VM, Rajan I, Yang Q, Cullinan E, Lanthorn TH (2008) Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS One 3(10):e3301. doi:10.1371/journal.pone.0003301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaefer TL, Vorhees CV, Williams MT (2009) Mouse plasmacytoma-expressed transcript 1 knock out induced 5-HT disruption results in a lack of cognitive deficits and an anxiety phenotype complicated by hypoactivity and defensiveness. Neuroscience 164(4):1431–1443. doi:10.1016/j.neuroscience.2009.09.059

  • Shannon DC, Kelly DH, O’Connell K (1977) Abnormal regulation of ventilation in infants at risk for sudden-infantdeath syndrome. N Engl J Med 297(14):747–750. doi:10.1056/NEJM197710062971403

  • Smith JC, Abdala AP, Borgmann A, Rybak IA, Paton JF (2013) Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci 36(3):152–162. doi:10.1016/j.tins.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  • Stankovski L, Alvarez C, Ouimet T, Vitalis T, El-Hachimi KH, Price D, Deneris E, Gaspar P, Cases O (2007) Developmental cell death is enhanced in the cerebral cortex of mice lacking the brain vesicular monoamine transporter. J Neurosci 27(6):1315–1324. doi:10.1523/JNEUROSCI.4395-06.2007

  • Takakura AC, Barna BF, Cruz JC, Colombari E, Moreira TS (2014) Phox2b-expressing retrotrapezoid neurons and the integration of central and peripheral chemosensory control of breathing in conscious rats. Exp Physiol 99(3):571–585. doi:10.1113/expphysiol.2013.076752

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Machaalani R, Waters KA (2012) Expression of brain-derived neurotrophic factor and TrkB receptor in the sudden infant death syndrome brainstem. Respir Physiol Neurobiol 180(1):25–33. doi:10.1016/j.resp.2011.10.004

  • Taylor NC, Li A, Green A, Kinney HC, Nattie EE (2004) Chronic fluoxetine microdialysis into the medullary raphe nuclei of the rat, but not systemic administration, increases the ventilatory response to CO2. J Appl Physiol (1985) 97(5):1763–1773. doi:10.1152/japplphysiol.00496.2004

    Article  CAS  Google Scholar 

  • Teran FA, Massey CA, Richerson GB (2014) Serotonin neurons and central respiratory chemoreception: where are we now? Prog Brain Res 209:207–233. doi:10.1016/B978-0-444-63274-6.00011-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Tryba AK, Pena F, Ramirez JM (2006) Gas** activity in vitro: a rhythm dependent on 5-HT2A receptors. J Neurosci 26(10):2623–2634. doi:10.1523/JNEUROSCI.4186-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Upton AL, Salichon N, Lebrand C, Ravary A, Blakely R, Seif I, Gaspar P (1999) Excess of serotonin (5-HT) alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development. J Neurosci 19(16):7007–7024

    Google Scholar 

  • Upton AL, Ravary A, Salichon N, Moessner R, Lesch KP, Hen R, Seif I, Gaspar P (2002) Lack of 5-HT(1B) receptor and of serotonin transporter have different effects on the segregation of retinal axons in the lateral geniculate nucleus compared to the superior colliculus. Neuroscience 111:597–610

    Google Scholar 

  • Vacher CM, Calas A, Maltonti F, Hardin-Pouzet H (2004) Postnatal regulation by monoamines of vasopressin expression in the neuroendocrine hypothalamus of MAO-A-deficient mice. Eur J Neurosci 19(4):1110–1114

    Google Scholar 

  • Velasquez JC, Goeden N, Bonnin A (2013) Placental serotonin: implications for the developmental effects of SSRIs and maternal depression. Front Cell Neurosci 7:47. doi:10.3389/fncel.2013.00047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viemari JC, Hilaire G (2003) Monoamine oxidase A-deficiency and noradrenergic respiratory regulations in neonatal mice. Neurosci Lett 340(3):221–224

    Article  CAS  PubMed  Google Scholar 

  • Viemari JC, Roux JC, Tryba AK, Saywell V, Burnet H, Pena F, Zanella S, Bevengut M, Barthelemy-Requin M, Herzing LB, Moncla A, Mancini J, Ramirez JM, Villard L, Hilaire G (2005) Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice. J Neurosci 25(50):11521–11530. doi:10.1523/JNEUROSCI.4373-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskaya GB, Skrinskaya JA, Seif I, Popova NK (2007) Effect of MAO A deficiency on different kinds of aggression and social investigation in mice. Aggress Behav 33(1):1–6. doi:10.1002/ab.20161

    Article  CAS  PubMed  Google Scholar 

  • Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66(9):1673–1680

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Chan SA, Ogier M, Hellard D, Wang Q, Smith C, Katz DM (2006) Dysregulation of brain-derived neurotrophic factor expression and neurosecretory function in Mecp2 null mice. J Neurosci 26(42):10911–10915. doi:10.1523/JNEUROSCI.1810-06.2006

  • Wang S, Shi Y, Shu S, Guyenet PG, Bayliss DA (2013) Phox2b-expressing retrotrapezoid neurons are intrinsically responsive to H+ and CO2. J Neurosci 33(18):7756–7761. doi:10.1523/JNEUROSCI.5550-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weese-Mayer DE, Lieske SP, Boothby CM, Kenny AS, Bennett HL, Ramirez JM (2008) Autonomic dysregulation in young girls with Rett Syndrome during nighttime in-home recordings. Pediatr Pulmonol 43(11):1045–1060. doi:10.1002/ppul.20866

  • Weese-Mayer DE, Rand CM, Berry-Kravis EM, Jennings LJ, Loghmanee DA, Patwari PP, Ceccherini I (2009) Congenital central hypoventilation syndrome from past to future: model for translational and transitional autonomic medicine. Pediatr Pulmonol 44(6):521–535. doi:10.1002/ppul.21045

    Article  PubMed  Google Scholar 

  • Zanella S, Tauber M, Muscatelli F (2009) Breathing deficits of the Prader-Willi syndrome. Respir Physiol Neurobiol 168(1–2):119–124. doi:10.1016/j.resp.2009.03.010

    Article  PubMed  Google Scholar 

  • Zhang X, Su J, Cui N, Gai H, Wu Z, Jiang C (2011) The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome. Am J Physiol Cell Physiol 301(3):C729–738. doi:10.1152/ajpcell.00334.2010

  • Zhao ZQ, Chiechio S, Sun YG, Zhang KH, Zhao CS, Scott M, Johnson RL, Deneris ES, Renner KJ, Gereau RWt, Chen ZF (2007) Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci 27(22):6045–6053. doi:10.1523/JNEUROSCI.1623-07.2007

Download references

Acknowledgment

Grants Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) # 1171434 (JE) and DICYT-USACH. K. Bravo is a PhD candidate at PhD Program in Neuroscience, Universidad de Santiago de Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Llona PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bravo, K., Eugenín, J., Llona, I. (2017). Neurodevelopmental Effects of Serotonin on the Brainstem Respiratory Network. In: von Bernhardi, R., Eugenín, J., Muller, K. (eds) The Plastic Brain. Advances in Experimental Medicine and Biology, vol 1015. Springer, Cham. https://doi.org/10.1007/978-3-319-62817-2_11

Download citation

Publish with us

Policies and ethics

Navigation