NTM in Bronchiectasis

  • Chapter
  • First Online:
Bronchiectasis

Abstract

Recognition of nontuberculous mycobacterial (NTM) lung disease has substantially increased over the past 30 years and is associated by all measures with an increase in incidence and prevalence worldwide [1, 2]. While Mycobacterium avium complex (MAC) remains the most common of the NTM isolates causing lung disease throughout the world, there are geographic variations of other NTM species-specific lung disease differences at the inter- and intracontinental levels that are important to be aware of [3]. These differences are striking even across specific countries and states [4–6]. It is now estimated that there are nearly 200 different NTM species based on 16S rRNA gene sequencing emphasizing the importance of clinicians working closely with their laboratory colleagues to best identify and care for NTM lung disease patients. Prevalence rates of NTM lung disease have increased worldwide. Not surprisingly, prevalence rates of NTM lung disease appear to qualitatively parallel environmental NTM [7]. That is to say, despite the ubiquitous nature of NTM in the environment, geographic areas with increased NTM present appear to be associated with increased prevalence of NTM lung disease [4]. Complex relationships are nonetheless likely present linking the amount of NTM present in the general environment relative to corresponding household environments although this perspective is more speculation than based on robust data. The extent to which mitigation strategies in the household environment impact the occurrence and/or reinfection of NTM lung disease rates remains equally unclear [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416. https://doi.org/10.1164/rccm.200604-571ST.

    Article  CAS  PubMed  Google Scholar 

  2. Griffith DE, Aksamit TR. Understanding nontuberculous mycobacterial lung disease: it’s been a long time coming. F1000Res. 2016;5:2797.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hoefsloot W, van Ingen J, Andrejak C, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42(6):1604–13. https://doi.org/10.1183/09031936.00149212.

    Article  PubMed  Google Scholar 

  4. Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012;185(8):881–6. https://doi.org/10.1164/rccm.201111-2016OC.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Winthrop KL, Varley CD, Ory J, Cassidy PM, Hedberg K. Pulmonary disease associated with nontuberculous mycobacteria, Oregon, USA. Emerg Infect Dis. 2011;17(9):1760–1. https://doi.org/10.3201/eid1709.101929.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morimoto K, Hasegawa N, Izumi K, et al. A laboratory-based analysis of nontuberculous mycobacterial lung disease in Japan from 2012 to 2013. Ann Am Thorac Soc. 2017;14(1):49–56. https://doi.org/10.1513/AnnalsATS.201607-573OC.

    Article  PubMed  Google Scholar 

  7. Strollo SE, Adjemian J, Adjemian MK, Prevots DR. The burden of pulmonary nontuberculous mycobacterial disease in the United States. Ann Am Thorac Soc. 2015;12(10):1458–64. https://doi.org/10.1513/AnnalsATS.201503-173OC.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Falkinham JO III. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis. 2011;17(3):419–24. https://doi.org/10.3201/eid1703.101510.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kendall BA, Winthrop KL. Update on the epidemiology of pulmonary nontuberculous mycobacterial infections. Semin Respir Crit Care Med. 2013;34(1):87–94. https://doi.org/10.1055/s-0033-1333567.

    Article  PubMed  Google Scholar 

  10. Donohue MJ, Wymer L. Increasing prevalence rate of nontuberculous mycobacteria infections in five states, 2008–2013. Ann Am Thorac Soc. 2016;13(12):2143–50.

    Article  PubMed  Google Scholar 

  11. Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med. 2015;36(1):13–34. https://doi.org/10.1016/j.ccm.2014.10.002.

    Article  PubMed  Google Scholar 

  12. Winthrop KL, Henkle E, Walker A, et al. On the reportability of nontuberculous mycobacterial disease to public health authorities. Ann Am Thorac Soc. 2017;14(3):314–7. https://doi.org/10.1513/AnnalsATS.201610-802PS.

    Article  PubMed  Google Scholar 

  13. Thomson R, Donnan E, Konstantinos A. Notification of nontuberculous mycobacteria: an Australian perspective. Ann Am Thorac Soc. 2017;14(3):318–23. https://doi.org/10.1513/AnnalsATS.201612-994OI.

    Article  PubMed  Google Scholar 

  14. Winthrop KL, Chang E, Yamashita S, Iademarco MF, LoBue PA. Nontuberculous mycobacteria infections and anti-tumor necrosis factor-alpha therapy. Emerg Infect Dis. 2009;15(10):1556–61. https://doi.org/10.3201/eid1510.090310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andrejak C, Nielsen R, Thomsen VO, et al. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax. 2013;68(3):256–62. https://doi.org/10.1136/thoraxjnl-2012-201772.

    Article  PubMed  Google Scholar 

  16. Ni S, Fu Z, Zhao J, Liu H. Inhaled corticosteroids (ICS) and risk of mycobacterium in patients with chronic respiratory diseases: a meta-analysis. J Thorac Dis. 2014;6(7):971–8. https://doi.org/10.3978/j.issn.2072-1439.2014.07.03.

    PubMed  PubMed Central  Google Scholar 

  17. Kim RD, Greenberg DE, Ehrmantraut ME, et al. Pulmonary nontuberculous mycobacterial disease: prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med. 2008;178(10):1066–74. https://doi.org/10.1164/rccm.200805-686OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kartalija M, Ovrutsky AR, Bryan CL, et al. Patients with nontuberculous mycobacterial lung disease exhibit unique body and immune phenotypes. Am J Respir Crit Care Med. 2013;187(2):197–205. https://doi.org/10.1164/rccm.201206-1035OC.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Olivier KN. Lady windermere dissected: more form than fastidious. Ann Am Thorac Soc. 2016;13(10):1674–6.

    PubMed  PubMed Central  Google Scholar 

  20. Szymanski EP, Leung JM, Fowler CJ, et al. Pulmonary nontuberculous mycobacterial infection. A multisystem, multigenic disease. Am J Respir Crit Care Med. 2015;192(5):618–28. https://doi.org/10.1164/rccm.201502-0387OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aksamit TR. Mycobacterium avium complex pulmonary disease in patients with pre-existing lung disease. Clin Chest Med. 2002;23(3):643–53.

    Article  PubMed  Google Scholar 

  22. Griffith DE, Aksamit TR. Bronchiectasis and nontuberculous mycobacterial disease. Clin Chest Med. 2012;33(2):283–95. https://doi.org/10.1016/j.ccm.2012.02.002.

    Article  PubMed  Google Scholar 

  23. Fitzpatrick ME, Sethi S, Daley CL, et al. Ray, infections in “noninfectious” lung diseases. Ann Am Thorac Soc. 2014;11(Suppl 4):S221–6. https://doi.org/10.1513/AnnalsATS.201401-041PL.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aksamit TR, O’Donnell AE, Barker A, et al. Adult bronchiectasis patients: a first look at the United States bronchiectasis research registry. Chest. 2016;151(5):982–92. https://doi.org/10.1016/j.chest.2016.10.055.

    Article  PubMed  Google Scholar 

  25. Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet. 2014;384(9944):691–702. https://doi.org/10.1016/S0140-6736(14)61136-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dirac MA, Horan KL, Doody DR, et al. Environment or host?: a case-control study of risk factors for Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2012;186(7):684–91. https://doi.org/10.1164/rccm.201205-0825OC.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bryant JM, Grogono DM, Greaves D, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381(9877):1551–60. https://doi.org/10.1016/S0140-6736(13)60632-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aitken ML, Limaye A, Pottinger P, et al. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med. 2012;185(2):231–2.

    Article  CAS  PubMed  Google Scholar 

  29. Bryant JM, Grogono DM, Rodriguez-Rincon D, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016;354(6313):751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller WT, Panosian JS. Causes and imaging patterns of tree-in-bud opacities. Chest. 2013;144(6):1883–92. https://doi.org/10.1378/chest.13-1270.

    Article  PubMed  Google Scholar 

  31. Lee G, Lee KS, Moon JW, et al. Nodular bronchiectatic Mycobacterium avium complex pulmonary disease. Natural course on serial computed tomographic scans. Ann Am Thorac Soc. 2013;10(4):299–306. https://doi.org/10.1513/AnnalsATS.201303-062OC.

    Article  PubMed  Google Scholar 

  32. Hayashi M, Takayanagi N, Kanauchi T, et al. Prognostic factors of 634 HIV-negative patients with Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2012;185(5):575–83. https://doi.org/10.1164/rccm.201107-1203OC.

    Article  CAS  PubMed  Google Scholar 

  33. van Ingen J, Griffith DE, Aksamit TR, Wagner D. Chapter 3. Pulmonary diseases caused by non-tuberculous mycobacteria. Eur Respir Mon. 2012;58:1–14. https://doi.org/10.1183/1025448x.10022511.

    Google Scholar 

  34. Griffith DE, Philley JV, Brown-Elliott BA, et al. The significance of Mycobacterium abscessus subspecies abscessus isolation during Mycobacterium avium complex lung disease therapy. Chest. 2015;147(5):1369–75. https://doi.org/10.1378/chest.14-1297.

    Article  PubMed  Google Scholar 

  35. Adjemian J, Prevots DR, Gallagher J, et al. Lack of adherence to evidence-based treatment guidelines for nontuberculous mycobacterial lung disease. Ann Am Thorac Soc. 2014;11(1):9–16. https://doi.org/10.1513/AnnalsATS.201304-085OC.

    Article  PubMed  PubMed Central  Google Scholar 

  36. van Ingen J, Wagner D, Gallagher J, et al. Poor adherence to management guidelines in nontuberculous mycobacterial pulmonary diseases. Eur Respir J. 2017;49(2). https://doi.org/10.1183/13993003.01855-2016.

  37. Wolinsky E. Nontuberculous mycobacteria and associated diseases. Am Rev. Respir Dis. 1979;119(1):107–59.

    CAS  PubMed  Google Scholar 

  38. Haworth CS, Banks J, Capstick T et al. British Thoracic Society Guidelines for the Diagnosis and Management of Non-Tuberculous Mycobacterial Pulmonary Disease (NTM-PD), Thorax 2017;in press.

    Google Scholar 

  39. Research Committee of the British Thoracic S. First randomised trial of treatments for pulmonary disease caused by M avium intracellulare, M. malmoense, and M. xenopi in HIV negative patients: rifampicin, ethambutol and isoniazid versus rifampicin and ethambutol. Thorax. 2001;56(3):167–72.

    Article  Google Scholar 

  40. Jenkins PA, Campbell IA, Banks J, Gelder CM, Prescott RJ, Smith AP. Clarithromycin vs ciprofloxacin as adjuncts to rifampicin and ethambutol in treating opportunist mycobacterial lung diseases and an assessment of mycobacterium vaccae immunotherapy. Thorax. 2008;63(7):627–34. https://doi.org/10.1136/thx.2007.087999.

    Article  CAS  PubMed  Google Scholar 

  41. Chaisson RE, Benson CA, Dube MP, et al. Clarithromycin therapy for bacteremic Mycobacterium avium complex disease. A randomized, double-blind, dose-ranging study in patients with AIDS. AIDS clinical trials group protocol 157 study team. Ann Intern Med. 1994;121(12):905–11.

    Article  CAS  PubMed  Google Scholar 

  42. Wallace RJ Jr, Brown BA, Griffith DE, et al. Initial clarithromycin monotherapy for Mycobacterium avium-intracellulare complex lung disease. Am J Respir Crit Care Med. 1994;149(5):1335–41. https://doi.org/10.1164/ajrccm.149.5.8173775.

    Article  PubMed  Google Scholar 

  43. Tanaka E, Kimoto T, Tsuyuguchi K, et al. Effect of clarithromycin regimen for Mycobacterium avium complex pulmonary disease. Am J Respir Crit Care Med. 1999;160(3):866–72. https://doi.org/10.1164/ajrccm.160.3.9811086.

    Article  CAS  PubMed  Google Scholar 

  44. Wallace RJ Jr, Brown BA, Griffith DE, Girard WM, Murphy DT. Clarithromycin regimens for pulmonary Mycobacterium avium complex. The first 50 patients. Am J Respir Crit Care Med. 1996;153(6 Pt 1):1766–72. https://doi.org/10.1164/ajrccm.153.6.8665032.

    Article  PubMed  Google Scholar 

  45. Griffith DE, Brown-Elliott BA, Langsjoen B, et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006;174(8):928–34. https://doi.org/10.1164/rccm.200603-450OC.

    Article  CAS  PubMed  Google Scholar 

  46. Jeong BH, Jeon K, Park HY, et al. Intermittent antibiotic therapy for nodular bronchiectatic Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2015;191(1):96–103. https://doi.org/10.1164/rccm.201408-1545OC.

    Article  CAS  PubMed  Google Scholar 

  47. Wallace RJ Jr, Brown-Elliott BA, McNulty S, et al. Macrolide/Azalide therapy for nodular/bronchiectatic Mycobacterium avium complex lung disease. Chest. 2014;146(2):276–82. https://doi.org/10.1378/chest.13-2538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lam PK, Griffith DE, Aksamit TR, et al. Factors related to response to intermittent treatment of Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006;173(11):1283–9. https://doi.org/10.1164/rccm.200509-1531OC.

    Article  CAS  PubMed  Google Scholar 

  49. Kobashi Y, Matsushima T, Oka M. A double-blind randomized study of aminoglycoside infusion with combined therapy for pulmonary Mycobacterium avium complex disease. Respir Med. 2007;101(1):130–8. https://doi.org/10.1016/j.rmed.2006.04.002.

    Article  PubMed  Google Scholar 

  50. Olivier KN, Shaw PA, Glaser TS, et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc. 2014;11(1):30–5. https://doi.org/10.1513/AnnalsATS.201307-231OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Olivier KN, Griffith DE, Eagle G, et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med. 2017;195(6):814–23. https://doi.org/10.1164/rccm.201604-0700OC.

  52. Jeon K, Kwon OJ, Lee NY, et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med. 2009;180(9):896–902. https://doi.org/10.1164/rccm.200905-0704OC.

    Article  CAS  PubMed  Google Scholar 

  53. Koh WJ, Jeon K, Lee NY, et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med. 2011;183(3):405–10. https://doi.org/10.1164/rccm.201003-0395OC.

    Article  PubMed  Google Scholar 

  54. Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin Infect Dis. 2011;52(5):565–71. https://doi.org/10.1093/cid/ciq237.

    Article  PubMed  Google Scholar 

  55. Lyu J, Jang HJ, Song JW, et al. Outcomes in patients with Mycobacterium abscessus pulmonary disease treated with long-term injectable drugs. Respir Med. 2011;105(5):781–7. https://doi.org/10.1016/j.rmed.2010.12.012.

    Article  PubMed  Google Scholar 

  56. Mycobacterium kansasii pulmonary infection: a prospective study of the results of nine months of treatment with rifampicin and ethambutol. Research committee, British Thoracic Society. Thorax. 1994;49(5):442–5.

    Google Scholar 

  57. Sauret J, Hernandez-Flix S, Castro E, Hernandez L, Ausina V, Coll P. Treatment of pulmonary disease caused by Mycobacterium kansasii: results of 18 vs 12 months’ chemotherapy. Tuber Lung Dis. 1995;76(2):104–8.

    Article  CAS  PubMed  Google Scholar 

  58. Griffith DE, Brown-Elliott BA, Wallace RJ Jr. Thrice-weekly clarithromycin-containing regimen for treatment of mycobacterium kansasii lung disease: results of a preliminary study. Clin Infect Dis. 2003;37(9):1178–82. https://doi.org/10.1086/378742.

    Article  CAS  PubMed  Google Scholar 

  59. Ahn CH, Lowell JR, Ahn SS, Ahn S, Hurst GA. Chemotherapy for pulmonary disease due to mycobacterium kansasii: efficacies of some individual drugs. Rev Infect Dis. 1981;3(5):1028–34.

    Article  CAS  PubMed  Google Scholar 

  60. Pezzia W, Raleigh JW, Bailey MC, Toth EA, Silverblatt J. Treatment of pulmonary disease due to mycobacterium kansasii: recent experience with rifampin. Rev Infect Dis. 1981;3(5):1035–9.

    Article  CAS  PubMed  Google Scholar 

  61. Andrejak C, Lescure FX, Pukenyte E, et al. Mycobacterium xenopi pulmonary infections: a multicentric retrospective study of 136 cases in north-east France. Thorax. 2009;64(4):291–6. https://doi.org/10.1136/thx.2008.096842.

    Article  CAS  PubMed  Google Scholar 

  62. Andrejak C, Thomsen VO, Johansen IS, et al. Nontuberculous pulmonary mycobacteriosis in Denmark: incidence and prognostic factors. Am J Respir Crit Care Med. 2010;181(5):514–21. https://doi.org/10.1164/rccm.200905-0778OC.

    Article  PubMed  Google Scholar 

  63. Jo KW, Kim S, Lee JY, et al. Treatment outcomes of refractory MAC pulmonary disease treated with drugs with unclear efficacy. J Infect Chemother. 2014;20(10):602–6. https://doi.org/10.1016/j.jiac.2014.05.010.

    Article  CAS  PubMed  Google Scholar 

  64. Koh WJ, Hong G, Kim SY, et al. Treatment of refractory Mycobacterium Avium Complex lung disease with a moxifloxacin-containing regimen. Antimicrob Agents Chemother. 2013;57(5):2281–5. https://doi.org/10.1128/AAC.02281-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Griffith DE, Aksamit TR. Therapy of refractory nontuberculous mycobacterial lung disease. Curr Opin Infect Dis. 2012;25(2):218–27. https://doi.org/10.1097/QCO.0b013e3283511a64.

    Article  CAS  PubMed  Google Scholar 

  66. Griffith DE, Brown BA, Murphy DT, Girard WM, Couch L, Wallace RJ Jr. Initial (6-month) results of three-times-weekly azithromycin in treatment regimens for Mycobacterium Avium Complex lung disease in human immunodeficiency virus-negative patients. J Infect Dis. 1998;178(1):121–6.

    Article  CAS  PubMed  Google Scholar 

  67. Morimoto K, Namkoong H, Hasegawa N, et al. Macrolide-resistant Mycobacterium Avium Complex lung disease: analysis of 102 consecutive cases. Ann Am Thorac Soc. 2016;13(11):1904–11. https://doi.org/10.1513/AnnalsATS.201604-246OC.

    Article  PubMed  Google Scholar 

  68. Mitchell JD, Bishop A, Cafaro A, Weyant MJ, Pomerantz M. Anatomic lung resection for nontuberculous mycobacterial disease. Ann Thorac Surg. 2008;85(6):1887–1892.; discussion 92-3. https://doi.org/10.1016/j.athoracsur.2008.02.041.

    Article  PubMed  Google Scholar 

  69. Philley JV, Wallace RJ Jr, Benwill JL, et al. Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest. 2015;148(2):499–506. https://doi.org/10.1378/chest.14-2764.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Soni I, De Groote MA, Dasgupta A, Chopra S. Challenges facing the drug discovery pipeline for non-tuberculous mycobacteria. J Med Microbiol. 2016;65(1):1–8. https://doi.org/10.1099/jmm.0.000198.

    Article  CAS  PubMed  Google Scholar 

  71. Winthrop KL, Ku JH, Marras TK, et al. The tolerability of linezolid in the treatment of nontuberculous mycobacterial disease. Eur Respir J. 2015;45(4):1177–9. https://doi.org/10.1183/09031936.00169114.

    Article  CAS  PubMed  Google Scholar 

  72. van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother. 2012;56(12):6324–7. https://doi.org/10.1128/AAC.01505-12.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jarand J, Davis JP, Cowie RL, Field SK, Fisher DA. Long-term follow-up of Mycobacterium Avium Complex lung disease in patients treated with regimens including clofazimine and/or rifampin. Chest. 2016;149(5):1285–93. https://doi.org/10.1378/chest.15-0543.

    Article  PubMed  Google Scholar 

  74. Dubee V, Bernut A, Cortes M, et al. Beta-Lactamase inhibition by avibactam in mycobacterium abscessus. J Antimicrob Chemother. 2015;70(4):1051–8. https://doi.org/10.1093/jac/dku510.

    CAS  PubMed  Google Scholar 

  75. Milanes-Virelles MT, Garcia-Garcia I, Santos-Herrera Y, et al. Adjuvant interferon gamma in patients with pulmonary atypical Mycobacteriosis: a randomized, double-blind, placebo-controlled study. BMC Infect Dis. 2008;8:17. https://doi.org/10.1186/1471-2334-8-17.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Loebinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loebinger, M.R., Aksamit, T. (2018). NTM in Bronchiectasis. In: Chalmers, J., Polverino, E., Aliberti, S. (eds) Bronchiectasis. Springer, Cham. https://doi.org/10.1007/978-3-319-61452-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61452-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61451-9

  • Online ISBN: 978-3-319-61452-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation