Super-Earths: Atmospheric Accretion, Thermal Evolution and Envelope Loss

  • Chapter
  • First Online:
Formation, Evolution, and Dynamics of Young Solar Systems

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 445))

Abstract

Combined mass and radius observations have recently revealed many short-period planets a few times the size of Earth but with significantly lower densities. A natural explanation for the low density of these super Earths is a voluminous gas atmosphere that engulfs more compact rocky cores. Planets with such substantial gas atmospheres may be a missing link between smaller planets, that did not manage to obtain or keep an atmosphere, and larger planets, that accreted gas too quickly and became gas giants . In this chapter we review recent advancements in the understanding of low-density super-Earth formation and evolution. Specifically, we present a consistent picture of the various stages in the lives of these planets: gas accretion from the protoplanetary disk, possible atmosphere heating and evaporation mechanisms, collisions between planets, and finally, evolution up to the age at which the planets are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander, R., Pascucci, I., Andrews, S., Armitage, P., Cieza, L.: The dispersal of protoplanetary disks. In: Protostars and Planets VI, pp. 475–496. University of Arizona Press, Tuscon (2014). 1311.1819

    Google Scholar 

  • Barros, S.C.C., Almenara, J.M., Demangeon, O., Tsantaki, M., Santerne, A., Armstrong, D.J., Barrado, D., Brown, D., Deleuil, M., Lillo-Box, J., Osborn, H., Pollacco, D., Abe, L., Andre, P., Bendjoya, P., Boisse, I., Bonomo, A.S., Bouchy, F., Bruno, G., Cerda, J.R., Courcol, B., Díaz, R.F., Hébrard, G., Kirk, J., Lachurié, J.C., Lam, K.W.F., Martinez, P., McCormac, J., Moutou, C., Rajpurohit, A., Rivet, J.P., Spake, J., Suarez, O., Toublanc, D., Walker, S.R.: Photodynamical mass determination of the multiplanetary system K2-19. Mon. Not. R. Astron. Soc. 454, 4267–4276 (2015). 1510.01047

    Google Scholar 

  • Bodenheimer, P., Pollack, J.B.: Calculations of the accretion and evolution of giant planets The effects of solid cores. Icarus 67, 391–408 (1986)

    Article  ADS  Google Scholar 

  • Bodenheimer, P., Lin, D.N.C., Mardling, R.A.: On the tidal inflation of short-period extrasolar planets. Astrophys. J. 548, 466–472 (2001)

    Article  ADS  Google Scholar 

  • Bodenheimer, P., Laughlin, G., Lin, D.N.C.: On the radii of extrasolar giant planets. Astrophys. J. 592, 555–563 (2003). astro-ph/0303541

    Google Scholar 

  • Cossou, C., Raymond, S.N., Hersant, F., Pierens, A.: Hot super-Earths and giant planet cores from different migration histories. Astron. Astrophys. 569, A56 (2014). 1407.6011

    Google Scholar 

  • D’Angelo, G., Bodenheimer, P.: In Situ and Ex Situ formation models of Kepler 11 planets. Astrophys. J. 828, 33 (2016). 1606.08088

    Google Scholar 

  • Duffell, P.C., Chiang, E.: Eccentric Jupiters via disk-planet interactions. Astrophys. J. 812, 94 (2015). 1507.08667

    Google Scholar 

  • Freedman, R.S., Marley, M.S., Lodders, K.: Line and mean opacities for ultracool dwarfs and extrasolar planets. Astrophys. J. Suppl. Ser. 174, 504–513 (2008). 0706.2374

    Google Scholar 

  • Freedman, R.S., Lustig-Yaeger, J., Fortney, J.J., Lupu, R.E., Marley, M.S., Lodders, K.: Gaseous mean opacities for giant planet and ultracool dwarf atmospheres over a range of metallicities and temperatures. Astrophys. J. Suppl. Ser. 214, 25 (2014). 1409.0026

    Google Scholar 

  • Ginzburg, S., Sari, R.: Tidal heating of young super-Earth atmospheres Mon. Not. R. Astron. Soc. 464, 3937–3944 (2017). https://arxiv.org/abs/1608.03718

    Article  ADS  Google Scholar 

  • Ginzburg, S., Schlichting, H.E., Sari, R.: Super-Earth atmospheres: self-consistent gas accretion and retention. Astrophys. J. 825, 29 (2016). 1512.07925

    Google Scholar 

  • Goldreich, P., Sari, R.: Eccentricity evolution for planets in gaseous disks. Astrophys. J. 585, 1024–1037 (2003). astro-ph/0202462

    Google Scholar 

  • Goldreich, P., Lithwick, Y., Sari, R.: Planet formation by coagulation: a focus on Uranus and Neptune. Annu. Rev. Astron. Astrophys. 42, 549–601 (2004). astro-ph/0405215

    Google Scholar 

  • Gu, P.G., Lin, D.N.C., Bodenheimer, P.H.: The effect of tidal inflation instability on the mass and dynamical evolution of extrasolar planets with ultrashort periods. Astrophys. J. 588, 509–534 (2003). astro-ph/0303362

    Google Scholar 

  • Hayashi, C.: Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981)

    Article  ADS  Google Scholar 

  • Ibgui, L., Burrows, A.: Coupled evolution with tides of the radius and orbit of transiting giant planets: general results. Astrophys. J. 700, 1921–1932 (2009). 0902.3998

    Google Scholar 

  • Ibgui, L., Burrows, A., Spiegel, D.S.: Tidal heating models for the radii of the inflated transiting giant planets WASP-4b, WASP-6b, WASP-12b, WASP-15b, and TrES-4. Astrophys. J. 713, 751–763 (2010). 0910.4394

    Google Scholar 

  • Ibgui, L., Spiegel, D.S., Burrows, A.: Explorations into the viability of coupled radius-orbit evolutionary models for inflated planets. Astrophys. J. 727, 75 (2011). 0910.5928

    Google Scholar 

  • Ikoma, M., Hori, Y.: In Situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. Astrophys. J. 753, 66 (2012). 1204.5302

    Google Scholar 

  • Inamdar, N.K., Schlichting, H.E.: The formation of super-Earths and mini-Neptunes with giant impacts. Mon. Not. R. Astron. Soc. 448, 1751–1760 (2015). 1412.4440

    Google Scholar 

  • Inamdar, N.K., Schlichting, H.E.: Stealing the gas: giant impacts and the large diversity in exoplanet densities. Astrophys. J. Lett. 817, L13 (2016). 1510.02090

    Google Scholar 

  • Jackson, B., Greenberg, R., Barnes, R.: Tidal heating of extrasolar planets. Astrophys. J. 681, 1631–1638 (2008). 0803.0026

    Google Scholar 

  • Jackson, A.P., Davis, T.A., Wheatley, P.J.: The coronal X-ray-age relation and its implications for the evaporation of exoplanets. Mon. Not. R. Astron. Soc. 422, 2024–2043 (2012). 1111.0031

    Google Scholar 

  • Jontof-Hutter, D., Rowe, J.F., Lissauer, J.J., Fabrycky, D.C., Ford, E.B.: The mass of the Mars-sized exoplanet Kepler-138 b from transit timing. Nature 522, 321–323 (2015). 1506.07067

    Google Scholar 

  • Leconte, J., Chabrier, G., Baraffe, I., Levrard, B.: Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity. Astron. Astrophys. 516, A64 (2010). 1004.0463

    Google Scholar 

  • Lee, E.J., Chiang, E.: To cool is to accrete: analytic scalings for nebular accretion of planetary atmospheres. Astrophys. J. 811, 41 (2015). 1508.05096

    Google Scholar 

  • Lee, E.J., Chiang, E.: Breeding super-Earths and birthing super-puffs in transitional disks. Astrophys. J. 817, 90 (2016). 1510.08855

    Google Scholar 

  • Lee, E.J., Chiang, E., Ormel, C.W.: Make super-Earths, not Jupiters: accreting nebular gas onto solid cores at 0.1 AU and beyond. Astrophys. J. 797, 95 (2014). 1409.3578

    Google Scholar 

  • Lissauer, J.J., Jontof-Hutter, D., Rowe, J.F., Fabrycky, D.C., Lopez, E.D., Agol, E., Marcy, G.W., Deck, K.M., Fischer, D.A., Fortney, J.J., Howell, S.B., Isaacson, H., Jenkins, J.M., Kolbl, R., Sasselov, D., Short, D.R., Welsh, W.F.: All six planets known to orbit Kepler-11 have low densities. Astrophys. J. 770, 131 (2013). 1303.0227

    Google Scholar 

  • Liu, X., Burrows, A., Ibgui, L.: Theoretical radii of extrasolar giant planets: the cases of TrES-4, XO-3b, and HAT-P-1b. Astrophys. J. 687, 1191–1200 (2008). 0805.1733

    Google Scholar 

  • Liu, S.F., Hori, Y., Lin, D.N.C., Asphaug, E.: Giant impact: an efficient mechanism for the devolatilization of super-Earths. Astrophys. J. 812, 164 (2015). 1509.05772

    Google Scholar 

  • Lopez, E.D., Fortney, J.J.: The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776, 2 (2013). 1305.0269

    Google Scholar 

  • Lopez, E.D., Fortney, J.J., Miller, N.: How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond. Astrophys. J. 761, 59 (2012). 1205.0010

    Google Scholar 

  • Lundkvist, M.S., Kjeldsen, H., Albrecht, S., Davies, G.R., Basu, S., Huber, D., Justesen, A.B., Karoff, C., Silva Aguirre, V., Van Eylen, V., Vang, C., Arentoft, T., Barclay, T., Bedding, T.R., Campante, T.L., Chaplin, W.J., Christensen-Dalsgaard, J., Elsworth, Y.P., Gilliland, R.L., Handberg, R., Hekker, S., Kawaler, S.D., Lund, M.N., Metcalfe, T.S., Miglio, A., Rowe, J.F., Stello, D., Tingley, B., White, T.R.: Hot super-Earths stripped by their host stars. Nat. Commun. 7, 11201 (2016). 1604.05220

    Google Scholar 

  • Mamajek, E.E.: Initial conditions of planet formation: lifetimes of primordial disks. In: Usuda, T., Tamura, M., Ishii, M. (eds.) American Institute of Physics Conference Series, American Institute of Physics Conference Series, vol. 1158, pp. 3–10 (2009). 0906.5011

    Google Scholar 

  • Miller, N., Fortney, J.J., Jackson, B.: Inflating and deflating hot Jupiters: coupled tidal and thermal evolution of known transiting planets. Astrophys. J. 702, 1413–1427 (2009). 0907.1268

    Google Scholar 

  • Nettelmann, N., Holst, B., Kietzmann, A., French, M., Redmer, R., Blaschke, D.: Ab initio Equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. Astrophys. J. 683, 1217–1228 (2008). 0712.1019

    Google Scholar 

  • Owen, J.E., Jackson, A.P.: Planetary evaporation by UV X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425, 2931–2947 (2012). 1206.2367

    Google Scholar 

  • Owen, J.E., Wu, Y.: Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013). 1303.3899

    Google Scholar 

  • Owen, J.E., Wu, Y.: Atmospheres of low-mass planets: the “boil-off”. Astrophys. J. 817, 107 (2016). 1506.02049

    Google Scholar 

  • Piso, A.M.A., Youdin, A.N.: On the minimum core mass for giant planet formation at wide separations. Astrophys. J. 786, 21 (2014). 1311.0011

    Google Scholar 

  • Piso, A.M.A., Youdin, A.N., Murray-Clay, R.A.: Minimum core masses for giant planet formation with realistic equations of state and opacities. Astrophys. J. 800, 82 (2015). 1412.5185

    Google Scholar 

  • Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y.: Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996)

    Article  ADS  Google Scholar 

  • Rafikov, R.R.: Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 648, 666–682 (2006). astro-ph/0405507

    Google Scholar 

  • Rafikov, R.R.: Constraint on the giant planet production by core accretion. Astrophys. J. 727, 86 (2011). 1004.5139

    Google Scholar 

  • Rogers, L.A., Bodenheimer, P., Lissauer, J.J., Seager, S.: Formation and structure of low-density exo-Neptunes. Astrophys. J. 738, 59 (2011). 1106.2807

    Google Scholar 

  • Schlichting, H.E., Warren, P.H., Yin, Q.Z.: The last stages of terrestrial planet formation: dynamical friction and the late veneer. Astrophys. J. 752, 8 (2012). 1202.6372

    Google Scholar 

  • Seager, S., Kuchner, M., Hier-Majumder, C.A., Militzer, B.: Mass-radius relationships for solid exoplanets. Astrophys. J. 669, 1279–1297 (2007). 0707.2895

    Google Scholar 

  • Teyssandier, J., Ogilvie, G.I.: Growth of eccentric modes in disc-planet interactions. Mon. Not. R. Astron. Soc. 458, 3221–3247 (2016). 1603.00653

    Google Scholar 

  • Valencia, D., Pu, M.: Ohmic dissipation in mini-Neptunes. In: AAS/Division for Extreme Solar Systems Abstracts, vol. 3, p. 30105 (2015)

    Google Scholar 

  • Valencia, D., O’Connell, R.J., Sasselov, D.: Internal structure of massive terrestrial planets. Icarus 181, 545–554 (2006). astro-ph/0511150

    Google Scholar 

  • Walker, R.J.: Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde-Geochem. 69, 101–125 (2009)

    Google Scholar 

  • Weiss, L.M., Marcy, G.W.: The mass-radius relation for 65 exoplanets smaller than 4 earth radii. Astrophys. J. Lett. 783, L6 (2014). 1312.0936

    Google Scholar 

  • Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011). 1103.0556

    Google Scholar 

  • Winn, J.N., Holman, M.J.: Obliquity tides on hot Jupiters. Astrophys. J. Lett. 628, L159–L162 (2005). astro-ph/0506468

    Google Scholar 

  • Wolfgang, A., Lopez, E.: How rocky are they? The composition distribution of Kepler’s sub-Neptune planet candidates within 0.15 AU. Astrophys. J. 806, 183 (2015). 1409.2982

    Google Scholar 

  • Youdin, A.N.: The exoplanet census: a general method applied to Kepler. Astrophys. J. 742, 38 (2011). 1105.1782

    Google Scholar 

Download references

Acknowledgements

We thank Re’em Sari for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivan Ginzburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ginzburg, S., Inamdar, N.K., Schlichting, H.E. (2017). Super-Earths: Atmospheric Accretion, Thermal Evolution and Envelope Loss. In: Pessah, M., Gressel, O. (eds) Formation, Evolution, and Dynamics of Young Solar Systems. Astrophysics and Space Science Library, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-319-60609-5_10

Download citation

Publish with us

Policies and ethics

Navigation