Genetic Improvement of Rice (Oryza sativa L.)

  • Chapter
  • First Online:
Genetic Improvement of Tropical Crops

Abstract

The emerging challenges of increasing global population, decreasing arable lands, and escalating threats posed by climate change exert pressure on the genetic improvement of rice to increase its yield potential in irrigated and nonirrigated lands as it is the staple food of more than three billion people. Advances in genetics and molecular biology have enabled scientists to use yield-enhancing functional genes for rice genetic improvement. Recently, SNP markers associated with major yield-enhancing functional genes have been used to develop breeding lines with 9–32% yield increase over the check variety. New methods to identify high yield-expressing genes and to transfer these genes into different elite cultivars are continuously being developed to increase rice production and productivity. Additional genetic resources have also been identified from the nearest wild relatives. Resistance genes lost during the domestication process of rice and their pyramids are being transferred into elite rice cultivars to make the future rice cultivars genetically resistant to biotic stresses and tolerant to abiotic stresses. Promising methods are being developed toward the genetic improvement of rice by pyramiding genes for yield potential as well as resistance to biotic and abiotic stresses. Significant progress has been achieved at IRRI by enriching rice grain with provitamin A (b-carotene) and bio-fortification of iron and zinc. Bioavailability of these micronutrients will provide benefit to poor rice consumers, particularly in Asia to overcome the problems of vitamin A, iron, and zinc deficiency in their diet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmadizadeh M, Vispo NA, Calapit-Palao CDO, Pangaan ID, Dela Viña C, Singh RK (2016) Reproductive stage salinity tolerance in rice: a complex trait to phenotype. Ind J Plant Physio (Springer) 21:528. https://doi.org/10.1007/s40502-016-0268-6

    Article  CAS  Google Scholar 

  • Ali ML, Sanchez PL, SB Y, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 3:218–234

    Article  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Bandilo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, Tung CW, McCouch S, Thomson M, Mauleon R, Singh RK, Gregorio G, Redona E, Leung H (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11

    Article  Google Scholar 

  • Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–516

    Article  Google Scholar 

  • Bizimana JB, Luzi Kihupi A, Murori RW, Singh RK (2017) Identification of quantitative trait loci for salinity tolerance in rice (Oryza sativa L.) using IR29/Hasawi map** population. J Genet (accepted)

    Google Scholar 

  • Chang TT (1976) The origin, evolution, cultivation, dissemination and diversification of Asian and African rices. Euphytica 25:435–441

    Article  Google Scholar 

  • Dixit S, Biswal AK, Min A, Henry A, Oane RH, Raorane ML, Longkumer T, Pabuayon IM, Mutte SK, Vardarajan AR, Miro B, Govindan G, Albano-Enriquez B, Pueffeld M, Sreenivasulu N, Slamet-Loedin I, Sundarvelpandian K, Tsai YC, Raghuvanshi S, Hsing YI, Kumar A, Kohli A (2015) Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Nat Sci Rep 5:15183–15189

    Article  CAS  Google Scholar 

  • Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z et al (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci 106:22163–22168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehsan S, Eizenga GC (2014) Unraveling the secrets of rice wild species. In: Wengui Yan, **song Bao (eds) Agricultural and biological sciences “rice germplasm, genetics and improvement”, ISSN 978–953–51-1240-2. https://doi.org/10.5722/58393

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron nutrition of rice seed by the soybean ferritin gene. Nat Biotech 17:282–286

    Article  CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hefferon KL (2015) Nutritionally enhanced food crops: progress and prospectives. Int J Mol Sci 16:3895–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain H, Rahman MA, Alam MS, Singh RK (2015) Map** of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J Agron Crop Sci 201:17–31

    Article  CAS  Google Scholar 

  • Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45(6):707–711

    Article  CAS  PubMed  Google Scholar 

  • Iyer-Pascuzzi AS, McCouch SR (2007) Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. Mol Plant-Microbe Interact 20:731–739

    Article  CAS  PubMed  Google Scholar 

  • Jena KK (2010) The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. sativa. Breed Sci 60:518–523

    Article  Google Scholar 

  • Jena KK, Kim SR (2010) Current status of brown planthopper (BPH) resistance and genetics. Rice 3:161–171

    Article  Google Scholar 

  • Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS (2006) High-resolution map** of a new brown planthopper (BPH) resistance gene Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.) Theor Appl Genet 112:288–297

    Article  CAS  PubMed  Google Scholar 

  • Jena KK, Ballesfin ML, Vinarao RB (2016) Development of Oryza sativa L. by Oryza punctata Kotschy ex Steud. Monosomic addition lines with high value traits by interspecific hybridization. Theor Appl Genet 129:1873–1886

    Article  CAS  PubMed  Google Scholar 

  • Jena KK, Hechanova SL, Verdeprado H, Prahalada GD, Kim SR (2017) Development of 25 near-isogenic lines (NILs) with ten BPH resistance genes in rice (Oryza sativa L.): production, resistance spectrum and molecular analysis. Theor Appl Genet (in press) https://doi.org/10.1007/s00122-017-2963-8

  • Jeung JU, Heu SG, Shin MS, Vera Cruz CM, Jena KK (2006) Dynamics of Xanthomonas oryzae pv. oryzae populations in Korea and their relationship to known bacterial blight resistance genes. Phytopathology 96:867–875

    Article  CAS  PubMed  Google Scholar 

  • Jeung JU, Kim BR, Cho YC, Han SS, Moon HP, Lee YT, Jena KK (2007) A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet 115:1163–1177

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Kim SR, Kim YH, Suh JP, Park HM, Sreenivasulu N, Misra G, Kim SM, Hechanova SL, Kim H, Lee GS, Yoon UH, Kim TH, Lim H, Suh SC, Yang J, An G, Jena KK (2016) Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Sci Rep 6:34376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khush GS (2001) Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Sci 60:15–26

    Article  CAS  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    Article  CAS  PubMed  Google Scholar 

  • Khush GS, Brar DS (1998a) The application of biotechnology to rice. In: Ives C, Bedford B (eds) Agricultural biotechnology in international development. CAB International, Walingford, pp 92–121

    Google Scholar 

  • Khush GS, Brar DS (1998b) New tools to increase the efficiency of both phases. In: Biotechnology for rice breeding: progress and impact. Part III: Progress in rice genetic improvement for food security. Proceedings of the 20th session of International Rice Commission. FAO, Bangkok, Thailand. pp. 306

    Google Scholar 

  • Kim SM, Suh JP, Qin Y, Noh TH, Reinke RF, Jena KK (2015) Identification and fine-map** of a new resistance gene, Xa40, conferring resistance to bacterial blight races in rice (Oryza sativa L.) Theor Appl Genet 128:1933–1943

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Ramos J, Ashikari M, Virk PS, Torres EA, Nissila E, Hechanova SL, Mauleon R, Jena KK (2016) Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice 9:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretzschmar T, Pelayo MAF, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Mendioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J, Ismail AM (2015) A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1:15124

    Article  CAS  PubMed  Google Scholar 

  • Lin HX et al (2004) QTL for Na and K uptake of the shoot and root controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Tong H, **ao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J, Chu C (2015) Activation of big grain 1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci 112:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  Google Scholar 

  • Marathi B, Jena KK (2015) Floral traits to enhance out-crossing for higher hybrid seed production in rice: present status and future prospects. Euphytica 201:1–14

    Article  Google Scholar 

  • Marathi B, Ramos J, Hechanova SL, Oane RH, Jena KK (2015) SNP genoty** and characterization of pistil traits revealing a distinct phylogenetic relationship among the species of Oryza. Euphytica 201:131–148

    Article  Google Scholar 

  • Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42(6):545–549

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16(6):319–326

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi R, Mendioro MS, Diaz GQ, Gregorio GB, Singh RK (2013) Map** quantitative trait loci associated to yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.) J Genet 92(3):433–443

    Article  CAS  PubMed  Google Scholar 

  • Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Comms 1:132

    Article  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101:9971–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman ML, Jiang W, Chu SH, Qiao Y, Ham TH, Woo MO, Lee J, Khanam MS, Chin JH, Jeung JU, Brar DS, Jena KK, Koh HJ (2009) High-resolution map** of two rice brown planthopper resistance genes Bph20(t) and Bph21(t), originating from Oryza minuta. Theor Appl Genet 119:1237–1246

    Article  PubMed  Google Scholar 

  • Ramos JM, Furuta T, Uehara K, Chihiro N, Angeles-Shim RB, Shim J, Brar DS, Ashikari M, Jena KK (2016) Development of chromosome segment substitution lines (CSSLs) of Oryza longistaminata A. Chev. & Rohr in the background of the elite japonica rice cultivar, Taichung 65 and their evaluation for yield traits. Euphytica 210:151–163

    Article  CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lim HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Ronald PC, Albano B, Tabien R, Abenes L, Wu K, McCouch S, Tanksley SD (1992) Genetic and physical analysis of rice bacterial blight resistance locus, Xa21. Mol Gen Genet 236:113–120

    CAS  PubMed  Google Scholar 

  • Seck PA, Diagne A, Mohanty S, Wooperis MCS (2012) Crops that feed the world. Food Sec 4:7–24

    Article  Google Scholar 

  • Singh RK, Flowers TJ (2010) The physiology and molecular biology of the effects of salinity on rice. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. Taylor and Francis, Florida, pp 899–939

    Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhao WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan B, Gnanamanickam S (2005) Identification of a new source of resistance in wild rice, Oryza rufipogon, to bacterial blight of rice caused by Indian strains of Xanthomonas oryzae pv. oryzae. Curr Sci 88:25

    Google Scholar 

  • Suh JP, Noh TH, Kim KY, Kim JJ, Kim YG, Jena KK (2009) Expression levels of three bacterial blight resistance genes against K3a race of Korea by molecular and phenotype analysis in japonica rice (O. sativa L.) J Crop Sci Biotechnol 12(3):103–108

    Article  Google Scholar 

  • Suh JP, Yang SJ, Jeung JU, Pamplona A, Kim JJ, Jong-Hee Lee JH, Hong HC, Yang CI, Kim YG, Jena KK (2011) Development of elite breeding lines conferring Bph18 gene-derived resistance to brown planthopper (BPH) by marker-assisted selection and genome-wide background analysis in japonica rice (Oryza sativa L.) Field Crop Res 120:215–222

    Article  Google Scholar 

  • Suh JP, Jeung JU, Noh TH, Cho YC, Park SH, Park HS, Shin MS, Kim CK, Jena KK (2013) Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice 6:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Suh JP, Cho YC, Won YJ, Ahn EK, Baek MK, Kim MK, Kim BK, Jena KK (2015) Development of resistant gene-pyramided Japonica rice for multiple biotic stresses using molecular marker-assisted selection. Plant Breed Biotech 3:333–345

    Article  Google Scholar 

  • Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP, Stangoulis J, Chadha-Mohanty P, Johnson AAT, Tohme J, Barry G, Slamet-Loedin IH (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Zheng R, Zhu H, Dong G, Qian Q, Zhang Z, Fu X (2012) Control of grain size, shape, and quality by OsSpl16 in rice. Nat Genet 44:950–954

    Article  CAS  PubMed  Google Scholar 

  • **ng Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Roland PC, Mackill DJ (2000) A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet 263:681–689

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) ‘Sub1A’ is an ethylene-response factor-like gene that confers submergence tolerance to rice. Nature 442(10):705–708

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Develo** salt tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang A, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. The International Rice Research Institute, Los Baños, Laguna, p 251

    Google Scholar 

  • Zeigler RS, Thome J, Nelson J, Levy M, Correa-Victoria FJ (1994) Lineage exclusion: a proposal for linking blast population analysis to resistance breeding. Rice blast disease. CAB International, Wallingford, pp 267–292

    Google Scholar 

  • Zhang Q, Li J, Xue Y, Han B, Deng XW (2008) Rice 2020. A call for an international coordinated effort in rice functional genomics. Mol Plant 1:715–719

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wu L, Wu X, Ding Y, Li G, Li J, Weng F, Liu Z, Tang S, Ding C, Wang S (2016) Lodging resistance of japonica rice (Oryza sativa L.): morphological and anatomical traits due to top-dressing nitrogen application rates. Rice 9:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino acid differences within three leucine rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact 19:1216–1228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are grateful to the Global Rice Science Partnership (GRiSP) program of IRRI for supporting the writing of this review article. We thank Dr. R. K. Singh, rainfed lowland rice breeder, IRRI, for providing information on breeding structure and salinity tolerance. We like to thank Ms. Joie Ramos, associate breeder, and Ricky Vinarao, assistant breeder of the Novel Gene Resources Team of the Plant Breeding Division for develo** the graphics of the traits for genetic improvement of rice. We thank to the editorial team of IRRI Communications for their excellent editing the review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshirod K. Jena .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, K.K., Nissila, E.A.J. (2017). Genetic Improvement of Rice (Oryza sativa L.). In: Genetic Improvement of Tropical Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_4

Download citation

Publish with us

Policies and ethics

Navigation