Factors Affecting Genetic Transformation Efficiency in Sugarcane

  • Chapter
  • First Online:
Sugarcane Biotechnology: Challenges and Prospects

Abstract

Sugarcane (Saccharum officinarum) is an important cash crop cultivated across the world. Conventional breeding methods are used to cross different Saccharum spp. to develop sugarcane hybrids with high sucrose content and for other novel traits including increased tolerance to various biotic and abiotic stresses. Two major factors that limit conventional breeding method are that it is highly time consuming and difficulty in getting the desirable trait in the hybrid. These limitations can be overcome by genetic transformation method in which specific gene(s) are used to generate stable transgenic lines expressing specific trait. Compared to conventional breeding methods, generation of stable lines takes less time. In addition, complications associated with backcross and testcross during breeding program can be avoided. There are several reports since 1990s mentioning generation of transgenic sugarcane by different methods of transformation such as electroporation, particle bombardment method, and Agrobacterium-mediated transformation. Transient expression systems have also been developed in sugarcane. Nevertheless, all transformation methodologies have their own limitation which hinders the stable expression of the transformed gene. Here, we discuss about the complications and factors affecting efficiency of genetic transformation in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali S, Hassan SW, Razi-ud-Din S, Shah SZR (2004) Micropropagation of sugarcane through bud culture. Sarhad J. Agric 20:79–82

    Google Scholar 

  • Anderson DJ, Birch RG (2012) Minimal handling and super-binary vectors facilitate efficient, Agrobacterium-mediated transformation of sugarcane (Saccharum spp. hybrid). Trop Plant Biol 5:183–192

    Article  CAS  Google Scholar 

  • Arencibia AD, Carmona ER (2006) Sugarcane (Saccharum spp.) Methods Mol Biol 344:227–235

    CAS  PubMed  Google Scholar 

  • Arencibia A, Molina P, Gutierrez C, Fuentes A, Greenidge V, Menendez E, de la Riva G, Selman-Housein G (1992) Regeneration of transgenic sugarcane (Saccharum officinarum L.) plants from intact meristematic tissue transformed by electroporation. Biotecnol Apl 9:156–165

    Google Scholar 

  • Arencibia A, Molina PR, de la Riva G, Selman-Housein G (1995) Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell Rep 14:305–309

    Article  CAS  PubMed  Google Scholar 

  • Arencibia A, Vazquez R, Prieto D, Tellez P, Carmona E, Coego A, Hernandez L, de la Riva G, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem-borer attack. Mol Breed 3:247–255

    Article  Google Scholar 

  • Arencibia AD, Carmona ER, Tellez P, Chan MT, SM Y, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:1–10

    Article  Google Scholar 

  • Arvinth S, Arun S, Selvakesavan RK, Srikanth J, Mukunthan N, Kumar PA, Premachandran MN, Subramonian N (2010) Genetic transformation and pyramiding of aprotinin-expressing sugarcane with Cry1Ab for shoot borer (Chiloinfuscatellus) resistance. Plant Cell Rep 29:383–395

    Article  CAS  PubMed  Google Scholar 

  • Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SM (2007) Decolorization of textile dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088

    Article  CAS  PubMed  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Bower R, Elliott AR, Potier BAM, Birch RG (1996) High-efficiency, microprojectile-mediated co-transformation of sugarcane, using visible or selectable markers. Mol Breed 2:239–249

    Article  CAS  Google Scholar 

  • Cheavegatti-Gianotto A, de Abreu HMC, Arruda P, Bespalhok-Filho JC, Burnquist WL, Creste S et al (2011) Sugarcane (Saccharum X officinarum): a reference study for the regulation of genetically modified cultivars in Brazil. Trop Plant Biol 4:62–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WH, Gartland KMA, Davey MR, Sotak R, Gartland JS, Mulligan BJ, Power JB, Cocking EC (1987) Transformation of sugarcane protoplasts by direct uptake of a selectable chimeric gene. Plant Cell Rep 6:297–301

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Jarret RL, Li Z, **ng A, Demski JW (1996) Production of fertile transgenic peanut (Arachishypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep 15:653–657

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury MKU, Vasil IK (1992) Stably transformed herbicide resistant callus of sugarcane via microprojectile bombardment of cell suspension cultures and electroporation of protoplasts. Plant Cell 11:494–498

    CAS  Google Scholar 

  • Christou P, McCabe DE, Swain WF (1988) Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol 87:671–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christy LA, Arvinth S, Saravanakumar M, Kanchana M, Mukunthan N, Srikanth J, George T, Subramonian N (2009) Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer (Scripophaga excerptalis Walker). Plant Cell Rep 28:175–184

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dafny-Yelin M, Tzfira T (2007) Delivery of multiple transgenes to plant cells. Plant Physiol 145:1118–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Riva GA, Gonzalez-Cabrera J, Vazquez-Padron R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1:24–25

    Google Scholar 

  • Dong S, Delucca P, Geijskes RJ, Ke J, Mayo K, Mai P, Sainz M, Caffall K et al (2014a) Advances in Agrobacterium-mediated sugarcane transformation and stable transgene expression. Sugar Tech 16:366–371

    Article  CAS  Google Scholar 

  • Dong H, Zhao Y, Wang Y, Li H (2014b) Recombinant proteins expressed in lettuce. Indian J Biotechnol 13:427–436

    CAS  Google Scholar 

  • Elliott AR, Campbell JA, Dugdale B, Brettell RIS, Grof CPL (1999) Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Rep 18:707–714

    Article  CAS  Google Scholar 

  • Enriquez-Obregon GA, Vazquez-Padron RI, Prieto-Samsonov DL, Perez M, Selman-Housein G (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. Biotecnol Apl 14:169–174

    Google Scholar 

  • Enriquez-Obregon GA, Vazquez-padron RI, Prieto-sansonov DL, de la Riva GA, Selman-Housein G (1998) Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Article  CAS  Google Scholar 

  • Falco MC, Neto AT, Mendes BMJ, Arias FJZ (1996) Isolation and cultivation of protoplasts. Bras Fisiol Veg 8:175–179

    CAS  Google Scholar 

  • Franks T, Birch RG (1991) Gene transfer into intact sugarcane cells using microprojectile bombardment. Funct Plant Biol 18:471–480

    CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1993) Effects of tissue type and promoter strength on transient GUS expression in sugarcane following particle bombardment. Plant Cell Rep 12:666–670

    Article  CAS  PubMed  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant sugarcane containing the bar gene. Crop Sci 36:1367–1374

    Article  CAS  Google Scholar 

  • Gambley RL, Ford R, Smith GR (1993) Microprojectile transformation of sugarcane meristems and regeneration of shoots expressing β-glucuronidase. Plant Cell Rep 12:343–346

    Article  CAS  PubMed  Google Scholar 

  • Gao SJ, Damaj MB, Park JW, Beyene G, Buenrostro-Nava MT, Molina J, Wang X, Ciomperlik JJ, Manabayeva SA, Alvarado VY, Rathore KS, Scholthof HB, Mirkov TE (2013) Enhanced transgene expression in sugarcane by co-expression of virus-encoded RNA silencing suppressors. PloS One 14:e66046

    Article  Google Scholar 

  • Gao S, Yang Y, Wang C, Guo J, Zhou D, Wu Q, Su Y, Xu L, Que Y (2016) Transgenic sugarcane with a Cry1Ac gene exhibited better phenotypic traits and enhanced resistance against sugarcane borer. PLoS One 11:e0153929

    Article  PubMed  PubMed Central  Google Scholar 

  • Geijskes RJ, Wang L, Lakshmanan P, Mckeon MG, Berding N, Swain RS et al (2003) Smartsett™ seedlings: tissue cultured seed plants for the Australian sugar industry. Sugarcane Int 25:13–17

    Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzebelus E, Skop L (2014) Effect of β-lactam antibiotics on plant regeneration in carrot protoplast cultures. In Vitro Cell Dev Biol Plant 50:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JL, Ling H, Wu QB, Xu LP, Que YX (2014) The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep 4:7042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauptmann RM, Vasil V, Ozias-Skins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformation in the Gramineae. Plant Physiol 86:602–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinz DJ, Mee GW (1969) Plant differentiation from callus tissue of Saccharum species. Crop Sci 9:346–348

    Article  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Hille J, Verheggen F, Roelvink P, Franssen H, van Kammen A, Zabel P (1986) Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol Biol 7:171–176

    Article  CAS  PubMed  Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Post transcriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  • Jackson MA, Anderson DJ, Birch RG (2013) Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 22:143–151

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 26:581–590

    Article  CAS  PubMed  Google Scholar 

  • Joyce P, Kuwahata M, Turner N, Lakshmanan P (2010) Selection system and co cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant Cell Rep 29:173–183

    Article  CAS  PubMed  Google Scholar 

  • Joyce P, Hermann S, Connell A, Dinh Q, Shumbe L, Lakshmanan P (2014) Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods. Plant Biotechnol J 12:411–424

    Article  CAS  PubMed  Google Scholar 

  • Kalunke RM, Kolge AM, Babu KH, Prasad DT (2009) Agrobacterium mediated transformation of sugarcane for borer resistance using Cry1Aa3 gene and one-step regeneration of transgenic plants. Sugar Tech 11:355–359

    Article  CAS  Google Scholar 

  • Karami O (2008) Factors affecting Agrobacterium-mediated transformation of plants. Transgenic Plant J 2:127–137

    Google Scholar 

  • Kaur A, Gill MS, Gill R, Gosal SS (2007) Standardization of different parameters for ‘particle gun’ mediated genetic transformation of sugarcane (Saccharum officinarum L.) Indian J Biotechnol 6:31–34

    CAS  Google Scholar 

  • Khamrit R, Jaisil P, Bunnag S (2012) Callus induction, regeneration and transformation of sugarcane (Saccharum officinarum L.) with chitinase gene using particle bombardment. Afr J Biotechnol 11:6612–6618

    CAS  Google Scholar 

  • Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci 85:8502–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komori T, Imayama T, Kato N, Ishida Y, Ueki J, Komari T (2007) Current status of binary vectors and super-binary vectors. Plant Physiol 145:1155–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar T, Uzma KMR, Abbas Z, Ali GM (2014) Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol Biotechnol 56:199–209

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CLP, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363

    Article  CAS  Google Scholar 

  • Lee LY, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibbrandt NB, Snyman SJ (2001) Initial field testing of transgenic glufosinate-ammonium resistant sugarcane. S Afr Sugar Technol Proc 75:105–108

    Google Scholar 

  • Lutz KA, Azhagiri AK, Tungsuchat-Huang T, Maliga P (2007) A guide to choosing vectors for transformation of the plastid genome of higher plants. Plant Physiol 145:1201–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manfroi E, Yamazaki-Lau E, Grando MF, Roesler EA (2015) Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens. Genet Mol Biol 38:470–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  CAS  PubMed  Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Dev GK, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32:1557–1574

    Article  CAS  PubMed  Google Scholar 

  • Mayavan S, Subramanyam K, Jaganath B, Sathish D, Manickavasagam M, Ganapathi A (2015) Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant Cell Rep 34:1835–1848

    Article  CAS  PubMed  Google Scholar 

  • Mohan C (2016) Genome editing in sugarcane: challenges ahead. Front Plant Sci 7:1542

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina P, Menendez E, Arencibia A, Fuentes A, Alfonso J, Coll Y, Greenidge V, Perez S, Selman-Housein G (1993) Transient gene expression in sugarcane protoplasts after electroporation and polyethylene glycol treatment. Biotecnol Apl 10:171–175

    CAS  Google Scholar 

  • Nandakumar R, Chen L, Rogers SMD (2004) Factors affecting the Agrobacterium-mediated transient transformation of the wetland monocot, Typhalatifolia. Plant Cell Tissue Organ Cult 79:31–38

    Article  CAS  Google Scholar 

  • Nasir IA, Tabassum B, Qamar Z, Javed MA, Tariq M, Farooq AM, Butt SJ, Qayyum A, Husnain T (2014) Herbicide-tolerant sugarcane (Saccharum officinarum L.) plants: an unconventional method of weed removal. Turk J Biol 38:439–449

    Article  CAS  Google Scholar 

  • Naureby B, Billing K, Wyndaele R (1997) Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentration suitable for elimination of Agrobacterium tumefaciens. Plant Sci 123:169–177

    Article  Google Scholar 

  • Naz S, Ali A, Iqbal J (2008) Phenolic content in vitro cultures of chick pea (Cicerarietinum L.) during callogenesis and organogenesis. Pak J Bot 40:2525–2539

    CAS  Google Scholar 

  • Nutt KA, Allsopp PG, McGhie TK, Shepherd KM, Joyce PA (1999) Transgenic sugarcane with increased resistance to canegrubs. In: Conference of the Australian Society of Sugar Cane Technologists Proceedings, vol 21. pp 171–176

    Google Scholar 

  • Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:379

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajeevkumar S, Anunanthini P, Ramalingam S (2015) Epigenetic silencing in transgenic plants. Front Plant Sci 6:693

    Article  PubMed  PubMed Central  Google Scholar 

  • Rashid H, Yoki S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep 15:727–730

    Article  CAS  PubMed  Google Scholar 

  • Rathus C, Birch RG (1992) Stable transformation of callus from electroporated sugarcane protoplasts. Plant Sci 82:81–89

    Article  CAS  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5:27–37

    Article  CAS  Google Scholar 

  • Seema G, Pande HP, Lal J, Madan VK (2001) Plantlet regeneration of sugarcane varieties and transient GUS expression in calli by electroporation. Sugar Tech 3:27–33

    Article  Google Scholar 

  • Shrawat AK, Lorz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Kumar P, Tiwari NN, Rastogi J, Singh SP (2013) Current status of sugarcane transgenic: an overview. Adv Genet Eng 2:2

    Google Scholar 

  • Snyman SJ, Meyer GM, Carson DL, Botha FC (1996) Establishment of embryogenic callus and transient gene expression in selected sugarcane varieties. S Afr J Bot 62:29–37

    Article  Google Scholar 

  • Snyman SJ, Leibbrandt NB, Botha FC (1998) Buster resistant sugarcane. S Afr Sugar Technol Proc 72:140–142

    Google Scholar 

  • Solangi SK, Qureshi ST, Khan IA, Raza S (2016) Establishment of in vitro callus in sugarcane (Saccharum officinarum L.) varieties influenced by different auxins. Afr J Biotechnol 15:1541–1550

    Article  Google Scholar 

  • Song ZY, Tian JL, WZ F, Li L, LH L, Zhou L, Shan Z, Tang GX, Shou HX (2013) Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. J Zhejiang Univ Sci B 14:289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biol Plant 55:1–15

    Article  CAS  Google Scholar 

  • Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52

    Article  CAS  Google Scholar 

  • Taylor PW, Ko HL, Adkins SW, Rathus C, Birch RG (1992) Establishment of embryogenic callus and high protoplast yielding suspension cultures of sugarcane (Saccharum spp. hybrids). Plant Cell Tissue Organ Cult 28:69–78

    Article  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  CAS  PubMed  Google Scholar 

  • Vacher C, Kossler TM, Hochberg ME, Arthur E (2011) Weis impact of inter-specific hybridization between crops and weedy relatives on the evolution of flowering time in weedy phenotypes. PLoS One 6:e14649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyver CVD (2010) Genetic transformation of the euploid Saccharum officinarum via direct and indirect embryogenesis. Sugar Tech 12:21–25

    Article  Google Scholar 

  • Weng LX, Deng HH, Xu JL, Li Q, Zhang YQ, Jiang ZD, Li QW, Chen JW, Zhang LH (2011) Transgenic sugarcane plants expressing high levels of modified Cry1Ac provide effective control against stem borers in field trials. Transgenic Res 20:759–772

    Article  CAS  PubMed  Google Scholar 

  • Xu LP, Que YX, Xu JS, Fang SR, Zhang MQ, Chen YQ, Chen RK (2008) Establishment of genetic transformation system and obtaining transgenic sugarcane (var. badila) transformed with RS gene. Sugar Tech 10:128–132

    Article  CAS  Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  • Zucchi MI, Arizona H, Morais VA, Fungaro MHP, Vieira MLC (2002) Genetic instability of sugarcane plants derived from meristem cultures. Genet Mol Biol 25:91–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramalingam Sathishkumar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anunanthini, P., Kumar, S.R., Sathishkumar, R. (2017). Factors Affecting Genetic Transformation Efficiency in Sugarcane. In: Mohan, C. (eds) Sugarcane Biotechnology: Challenges and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-319-58946-6_5

Download citation

Publish with us

Policies and ethics

Navigation