Role of Zinc in Alleviating Heavy Metal Stress

  • Chapter
  • First Online:
Essential Plant Nutrients

Abstract

Heavy metals pollution is continuously increasing and posing threats to our environment. This heavy metals’ presence in soils accumulates in plants which become part of food supply. Heavy metals at their higher concentrations negatively affect plant growth parameters. Zn is one of the essential micronutrient which takes part in plant physiological functions and showed beneficial effects in plant growth, development processes and yield. Zn plays important role in cellular functions in all living organisms. Nevertheless, heavy metal concentrations are increasing in our agricultural soils through different anthropogenic activities which need to be discussed. Considering present scenario, this review was conducted to illustrate the promotive and beneficial role of Zn in alleviating heavy metals stress in various plants. It was observed that Zn not only ameliorate different metals’ toxic levels but also improve plant growth attributes by inhibiting heavy metals uptake in plant parts. Heavy metals induced oxidative stress and decline plant growth, biomass, chlorophyll contents, photosynthetic traits and many metabolic functions. Zn combat heavy metals toxicity by generating antioxidant defence system against oxidative damage and improved plant growth parameters by alleviating metals toxicity in different plants. However, Zn inadequate availability declined crop yield. Additionally, Zn deficiency disturbs plant growth and leaf chlorosis. Various techniques in the form of bio-fortification have been used to overcome Zn deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akay, A., & Koleli, N. (2007). Interaction between cadmium and zinc in barley (hordeum vulgare l.) grown under field conditions. Bangladesh Journal of Botany, 36, 13–19.

    Google Scholar 

  • Alloway, B. J. (2004). Zinc in soils and crop nutrition. Publication of International Zinc Association. Retrieved October 4, 2010, from http://www.iza.com/Documents/Communications/Publications/ALLOWAY_PRINT.pdf\.

  • Alloway, B. J. (2008a). Zinc in soils and crop nutrition. Brussels, Belgium: International Zinc Association.

    Google Scholar 

  • Alloway, B. J. (2008b). Copper and Zinc in soils: Too little or too much. New Zealand Trace Elements Group Conference 13–15th February 2008, University of the Waikato, Hamilton, New Zealand.

    Google Scholar 

  • Alloway, B. J. (2008c). Zinc in soils and crop nutrition (2nd ed.). Brussels Belgium/Paris, France: International Zinc Association/International Fertilizer Industry Association.

    Google Scholar 

  • Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31, 537–548.

    Article  CAS  PubMed  Google Scholar 

  • Alloway, B. J. (2013). Heavy metals and metalloids as micronutrients for plants and animals. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 195–209). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Andreini, C., Banci, L., Bertini, I., & Rosato, A. (2006). Zinc through the three domains of life. Journal of Proteome Research, 5, 3173–3178.

    Article  CAS  PubMed  Google Scholar 

  • Appenroth, K. J. (2010). Definition of “heavy metals” and their role in biological systems. Soil Heavy Metals, 19, 19–29.

    Article  CAS  Google Scholar 

  • Arvind, P., & Prasad, M. N. V. (2003). Zinc alleviates cadmium-induced oxidative stressin Ceratophyllum demersum L.: A free floating freshwater macrophyte. Plant Physiology and Biochemistry, 41, 391–397.

    Article  Google Scholar 

  • Arvind, P., & Prasad, M. N. V. (2005a). Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiology and Biochemistry, 43, 107–116.

    Article  Google Scholar 

  • Arvind, P., & Prasad, M. N. V. (2005b). Cadmium-Zinc interactions in a hydroponic system using Ceratophyllum demersum L.: Adaptive Ecophysiology, biochemistry and molecular toxicology. Brazilian Journal of Plant Physiology, 17, 3–20.

    Article  Google Scholar 

  • Babu, N. G., Sarma, P. A., Attitalla, I. H., & Murthy, S. D. S. (2010). Effect of selected heavy metal ions on the photosynthetic electron transport and energy transfer in the thylakoid membrane of the cyanobacterium, Spirulina platensis. Academic Journal of Plant Sciences, 3, 46–49.

    Google Scholar 

  • Bhutia, D. T. (2014). Protein energy malnutrition in India: The plight of our under five children. Journal of Family Medicine and Primary Care, 3, 63–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonnet, M., Camares, O., & Veisseire, P. (2000). Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perene L. cv Apollo). Journal of Experimental Botany, 51, 945–953.

    CAS  PubMed  Google Scholar 

  • Bouain, N., Shahzad, Z., Rouached, A., Khan, G. A., Berthomieu, P., et al. (2014). Phosphate and zinc transport and signalling in plants: Toward a better understanding of their homeostasis interaction. Journal of Experimental Botany, 65(20), 5725–5741. doi:10.1093/jxb/eru314.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, R. F. (2005). Zinc application and its availability to plants. PhD dissertation, Division of Science and Engineering, School of Environmental Science, Murdoch University.

    Google Scholar 

  • Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. The New Phytologist, 173, 677–702.

    Article  CAS  PubMed  Google Scholar 

  • Burleigh, S. H., Kristensen, B. K., & Bechmann, I. E. (2003). A plasma membrane zinc transporter from Medicago truncatula is upregulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Molecular Biology, 52, 1077–1088.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I. (2000). Role of zinc in protecting plant cells from reactive oxygen species. The New Phytologist, 146, 185–205.

    Article  CAS  Google Scholar 

  • Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic bio-fortification? Plant and Soil, 302, 1–17.

    Article  CAS  Google Scholar 

  • Cakmak, I. (2009). Bio-fortification of cereal grains with zinc by applying zinc fertilizers. Biozoom, 1, 2–7.

    Google Scholar 

  • Chandel, G., Datta, K., & Datta, S. K. (2010). Detection of genomic changes in transgenic Bt rice populations through genetic fingerprinting using amplified fragment length polymorphism (AFLP). GM Crops, 1, 327–336.

    Article  PubMed  Google Scholar 

  • Cherif, J., Mediouni, C., Ammar, W. B., & Jemal, F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). Journal of Environmental Sciences, 23, 837–844.

    Article  CAS  Google Scholar 

  • Clabeaux, B. L., Navarro, D. A., Aga, D. S., & Bisson, M. A. (2013). Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA. Ecotoxicology and Environmental Safety, 98, 236–243.

    Article  CAS  PubMed  Google Scholar 

  • Clemens, S. (2009). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719.

    Article  Google Scholar 

  • Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.

    Article  CAS  PubMed  Google Scholar 

  • Colangelo, E. P., & Guerinot, M. L. (2006). Put the metal to the petal: Metal uptake and transport throughout plants. Current Opinion in Plant Biology, 9, 322–330.

    Article  CAS  PubMed  Google Scholar 

  • Dang, H. R., Li, Y., Sun, X., & Zhang, Y. L. (2010). Absorption, accumulation and distribution of zinc in highly-yielding winter wheat. Agricultural Sciences in China, 9, 965–973.

    Article  CAS  Google Scholar 

  • Dazy, M., Masfaraud, J. F., & Ferard, J. F. (2009). Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere, 75, 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Deinlein, U., Weber, M., Schmidt, H., Rensch, S., Trampczynska, A., Hansen, T. H., Husted, S., Schjoerring, J. K., Talke, I. N., Kramer, U., & Clemens, S. (2012). Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in Zn hyperaccumulation. Plant Cell, 24, 708–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Disante, K. B., Fuentes, D., & Cortina, J. (2010). Response to drought of Zn-stressed Quercus suber L. seedlings. Environmental and Experimental Botany, 70, 96–103.

    Article  Google Scholar 

  • Epstein, E., & Bloom, A. (2005). Mineral nutrition of plants: Principles and perspectives. Sunderland: Sinauer Associates.

    Google Scholar 

  • Fageria, N. K. (2004). Dry matter yield and nutrient uptake by lowland rice at different growth stages. Journal of Plant Nutrition, 27, 947–958.

    Article  CAS  Google Scholar 

  • Foster, M., & Samman, S. (2012). Zinc and regulation of inflammatory cytokines: Implications for cardio-metabolic disease. Nutrients, 4, 676–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freisinger, E. (2008). Plant MTs—Long neglected members of the metallothioneins superfamily. Dalton Transactions, 47, 6663.

    Article  Google Scholar 

  • Genc, Y., McDonald, G. K., & Graham, R. D. (2006). Contribution of different mechanisms to zinc efficiency in bread wheat during early vegetative stage. Plant and Soil, 281, 353–367.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research, 3, 1–18.

    Article  Google Scholar 

  • Gratao, P. L., Monteiro, C. C., Antunes, A. M., Peres, L. E. P., & Azevedo, R. A. (2008). Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Annals of Applied Biology, 153, 321–333.

    Article  Google Scholar 

  • Hafeez, B., Khanif, Y. M., & Saleem, M. (2013). Role of zinc in plant nutrition—A review. American Journal of Experimental Agriculture, 3, 374–391.

    Article  CAS  Google Scholar 

  • Hall, J. L., & Williams, L. E. (2003). Transition metal transporters in plants. Journal of Experimental Botany, 54, 2601–2613.

    Article  CAS  PubMed  Google Scholar 

  • Hansch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12, 259–266.

    Article  PubMed  Google Scholar 

  • Hao, H., Wei, Y., Yang, X., Feng, Y., & Wu, C. (2007). Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa). Rice Science, 14, 289–294.

    Article  Google Scholar 

  • Hart, J. J., Welch, R. M., Norvell, W. A., & Kochian, L. V. (2002). Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiologia Plantarum, 116, 73–78.

    Article  CAS  PubMed  Google Scholar 

  • Haslett, B. S., Reid, R. J., & Rengel, Z. (2001). Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots. Annals of Botany, 87, 379–386.

    Article  CAS  Google Scholar 

  • Hassan, M. J., Zhang, G., Wu, F., Wei, K., & Chen, Z. (2005). Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. Journal of Plant Nutrition and Soil Science, 168, 255–261.

    Article  CAS  Google Scholar 

  • Horton, S. (2006). The economics of food fortification. The Journal of Nutrition, 136, 1068–1071.

    CAS  PubMed  Google Scholar 

  • Ikenaka, Y., Nakayama, S. M. M., Muzandu, K., Choongo, K., Teraoka, H., Mizuno, N., & Ishizuka, M. (2010). Heavy metal contamination of soil and sediment in Zambia. African Journal of Environmental Science and Technology, 4, 729–739.

    CAS  Google Scholar 

  • Iqbal, N., Masood, A., Nazar, R., Syeed, S., & Khan, N. A. (2010). Photosynthesis, growth and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in Cd tolerance. Agricultural Sciences in China, 9, 519–527.

    Article  CAS  Google Scholar 

  • Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  PubMed  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Boca Raton: CRC Press.

    Google Scholar 

  • Kaya, C., Higgs, D., & Burton, A. (2000). Plant growth, phosphorus nutrition and acidphosphatase enzyme activity in three tomato cultivers grown hydroponically at different zinc concentrations. Journal of Plant Nutrition, 23, 569–579.

    Article  CAS  Google Scholar 

  • Khudsar, T., Mahmooduzzafar Iqbal, M., & Sairam, R. K. (2004). Zinc-induced changes inmorpho-physiological and biochemical parameters in Artemisia annua. Biologia Plantarum, 48, 255–260.

    Article  CAS  Google Scholar 

  • King, J. C., & Cousins, R. J. (2006). Zinc. In M. E. Shils, M. Shike, A. C. Ross, B. Caballero, & R. J. Cousins (Eds.), Modern nutrition in health and disease (10th ed., pp. 271–285). Baltimore: Lippincot Williams and Wilkins.

    Google Scholar 

  • Koleli, N., Eker, S., & Cakmak, I. (2004). Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environmental Pollution, 131, 453–459.

    Article  CAS  PubMed  Google Scholar 

  • Latowski, D., Kuczyńska, P., & Strzałka, K. (2011). Xanthophyll cycle-a mechanism protecting plants against oxidative stress. Redox Report, 16, 78–90.

    Article  CAS  PubMed  Google Scholar 

  • Lonnerdal, B. (2000). Dietary factors influencing zinc absorption. The Journal of Nutrition, 130, 1378–1383.

    Google Scholar 

  • Maksymiec, W., Drazkiewicz, M., & Skorzynska-Polit, E. (2008). Responses of higher plants to heavy metal stress. Abiotic stress and plant responses (pp. 139–163). New Delhi: IK International Publishing House.

    Google Scholar 

  • Maret, W., & Sandstead, H. H. (2006). Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 20, 3–18.

    Article  CAS  PubMed  Google Scholar 

  • Marschner, H. (2012). Mineral nutrition of higher plants (3rd ed.). London: Academic Press.

    Google Scholar 

  • Martinez, C., & Motto, H. (2000). Solubility of lead, zinc and copper added to mineral soils. Environmental Pollution, 107, 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, J. E., Pfeiffer, W. H., & Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology, 11, 166–170.

    Article  CAS  PubMed  Google Scholar 

  • McCarty, M. F. (2012). Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure. Medical Hypotheses, 79, 642–648.

    Article  CAS  PubMed  Google Scholar 

  • Mousavi, S. R., Mohammad, G., & Goudarz, A. (2007). Effect of zinc and manganese foliar application on yield, quality and enrichment on potato (Solanum tuberosum L.) Asian Journal of Plant Sciences, 8, 1256–1260.

    Google Scholar 

  • Moustakas, N. K., Akoumianaki-Ioannidou, A., & Barouchas, P. E. (2011). The effects of cadmium and zinc interactions on the concentration of cadmium and zinc in pot marigold (Calendula officinalis L.) Australian Journal of Crop Science, 5(3), 277.

    CAS  Google Scholar 

  • Naik, S. K., & Das, D. K. (2008). Relative performance of chelated zinc and zinc sulphate for lowland rice (Oryza sativa L). Nutrition Cycle in Agroecosystem, 81, 219–227.

    Article  CAS  Google Scholar 

  • Overbeck, S., Rink, L., & Haase, H. (2008). Modulating the immune response by oral zinc supplementation: A single approach for multiple diseases. Archivum Immunologiae et Therapiae Experimentalis, 56, 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Palmgren, M. G., Clemens, S., Williams, L. E., Kramer, U., Borg, S., Schjorring, J. K., & Sanders, D. (2008). Zinc biofortification of cereals: Problems and solutions. Trends in Plant Science, 13, 464–473.

    Article  CAS  PubMed  Google Scholar 

  • Peck, A. W., & McDonald, G. K. (2010). Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant and Soil, 337, 355–374.

    Article  CAS  Google Scholar 

  • Phattarakul, N., Rarkasem, B., Li, L. J., LH, W., Zou, C. Q., Ram, H., Sohu, V. S., Kang, B. S., Surek, H., Kalayci, M., Yazici, A., Zhang, F. S., & Cakmak, I. (2012). Biofortificaiton of rice grain with zinc through zinc fertilization in different countries. Plant and Soil, 361, 131–141.

    Article  CAS  Google Scholar 

  • Pollard, A. J., Powell, K. D., Harper, F. A., & Smith, J. A. C. (2002). The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Sciences, 21, 539–566.

    Article  CAS  Google Scholar 

  • Prasad, A. S. (2008). Zinc in human health: Effect of zinc on immune cells. Molecular Medicine, 14, 353–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad, A. S. (2009). Zinc: Role in immunity, oxidative stress and chronic inflammation. Current Opinion in Clinical Nutrition and Metabolic Care, 12, 646–652.

    Article  CAS  PubMed  Google Scholar 

  • Przedpelska, E., & Wierzbicka, M. (2007). Arabidopsis arenosa (Brassicaceae) from a lead-zinc waste heap in southern Poland- a plant with high tolerance to heavy metals. Plant and Soil, 299, 43–53.

    Article  CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Roohani, N., Hurrell, R., Kelishadi, R., & Schullin, R. (2013). Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences, 18, 144–157.

    PubMed  PubMed Central  Google Scholar 

  • Shankar, A. H., & Prasad, A. S. (1998). Zinc and immune function: The biological basis of altered resistance to infection. The American Journal of Clinical Nutrition, 68(suppl), 447–463.

    Google Scholar 

  • Sinclair, S. A., & Kramer, U. (2012). The zinc homeostasis network of land plants. Biochimica et Biophysica Acta, 1823(9), 1553–1567.

    Article  CAS  PubMed  Google Scholar 

  • Singh, B., Natesan, S. K. A., Singh, B. K., & Usha, K. (2005). Improving zinc efficiency of cereals under zinc deficiency. Current Science, 88, 36–44.

    CAS  Google Scholar 

  • Singh, V. P., Srivastava, P. K., & Prasad, S. M. (2012). Differential effect of UV-B radiation on growth, oxidative stress and ascorbate-glutathione in two cyanobacteria under copper stress. Plant Physiology and Biochemistry, 61, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Tavallali, V., Rahemi, M., Eshghi, S., Kholdebarin, B., & Ramezanian, A. (2010). Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turkish Journal of Agriculture and Forestry, 34, 349–359.

    CAS  Google Scholar 

  • Tewari, R. K., Kumar, P., & Sharma, P. N. (2008). Morphology and physiology of zinc-stressed mulberry plants. Journal of Plant Nutrition and Soil Science, 171, 286–294.

    Article  CAS  Google Scholar 

  • Thounaojam TC, Panda P, Choudhury S, Patra HK, Panda SK (2014) Zinc ameliorates copper-induced oxidative stress in develo** rice (Oryza sativa L.) seedlings. Protoplasma (251):61–69.

    Article  CAS  PubMed  Google Scholar 

  • Tisdale, S. L., Nelson, W. L., & Beaten, J. D. (1984). Zinc in soil fertility and fertilizers (4th ed.pp. 382–391). New York: Macmillan.

    Google Scholar 

  • Trampczynska, A., Kupper, H., Meyer-Klaucke, W., Schmidt, H., & Clemens, S. (2010). Nicotianamine forms complexes with Zn (II) in vivo. Metallomics, 2, 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Tsonev, T., & Lidon, F. J. C. (2012). Zinc in plants-An overview. Emirates Journal of Food & Agriculture, 24, 322–333.

    Google Scholar 

  • Upadhyay, R., & Panda, S. K. (2009). Zinc reduced copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown duckweed Spirodela polyrhiza. Journal of Hazardous Materials, 175, 1081–1084.

    Article  PubMed  Google Scholar 

  • Ventrella, A., Catucci, L., Piletska, E., Piletsky, S., & Agostiano, A. (2011). Interactions between heavy metals and photosynthetic materials studied by optical techniques. Bioelectrochemistry, 77, 19–25.

    Article  Google Scholar 

  • Vesely, T., Neuberg, M., Trakal, L., Szakova, J., & Tlustoa, P. (2011). Water lettuce Pistia stratiotes L. response to lead toxicity. Water, Air, and Soil Pollution, 223, 1847–1859.

    Article  Google Scholar 

  • Wang, C., Zhang, S. H., Wang, P. F., Qian, J., Hou, J., Zhang, W. J., & Lu, J. (2009). Excess Zn alters the nutrient uptake and induces the antioxidative responses in submerged plant Hydrilla verticillata (L.f) Royle. Chemosphere, 76, 938–945.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO). (2002). The World Health Report 2002. Geneva: WHO.

    Google Scholar 

  • WHO, FAO, & IAEA. (2002). Trace elements in human health and nutrition (pp. 230–245). Geneva: WHO.

    Google Scholar 

  • Yadav, S. K. (2009). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. Journal of Botany, 76, 167–179.

    Google Scholar 

  • Yusuf, M., Fariduddin, Q., Varshney, P., & Ahmad, A. (2012). Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environmental Science and Pollution Research, 19, 8–18.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, A. Q., Tian, X. H., WH, L., Gale, W. J., XC, L., & Cao, Y. X. (2011). Effect of zinc on cadmium toxicity in winter wheat. Journal of Plant Nutrition, 34, 1372–1385.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaqat Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

ul Hassan, Z. et al. (2017). Role of Zinc in Alleviating Heavy Metal Stress. In: Naeem, M., Ansari, A., Gill, S. (eds) Essential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_14

Download citation

Publish with us

Policies and ethics

Navigation