Abstract

Global demand for energy is increasing at a fast rate especially in develo** economies such as India, China, and Indonesia with heavy reliance on fossil fuels. The CO2 levels in the atmosphere have increased to over 400 ppm. This combined with increase in the intensity of other pollutants (NOx, SOx, CO, methane, particulate matter, etc.) in the atmosphere is a real concern for the environment. With the major objective of reducing concentration of greenhouse gases and other pollutants and to increase reliability and security of energy supply for a sustainable future, significant progress is being made in the development and deployment of technologies and processes around renewable energy with solar and wind playing a dominant role. However, solar energy is not available in high intensity all around the word and thus there is a need for transporting energy from one place to other. Solar fuels are energy carriers and means of transporting solar energy in the form of easily transportable fuels and these are generated by embedding solar energy in the form of heat or electricity or both in water, CO2, and fossil fuels. A number of different technologies and processes (electrolytic, solar thermal, solar thermochemical cycles, chemical loo**, solar assisted reforming of natural gas, solar assisted coal/biomass gasification, photo-electrochemical, and photo-biological) for the production of major solar fuels (H2, CO, syngas, methanol, and ammonia) are briefly discussed and reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BSCF:

BaxSr1-xCoyFe1-yO3-δ

CAWE:

Carbon assisted water electrolysis

CCS:

Carbon capture and storage

CGO:

Gadolinia-doped ceria

CNG:

Compressed natural gas

CRS:

Central receiver systems

CSP:

Concentrated solar power

DME:

Dimethyl ether

DMR:

Dry-methane reforming

F–T:

Fischer–Tropsch

GHG:

Greenhouse gas

HHV:

High heating value

HT:

High temperature

ICE:

Internal combustion engine

LFR:

Linear Fresnel reflector

LHV:

Low heating value

LPG:

Liquefied petroleum gas

LSC:

LaxS1-xCoO3

LSCF:

LaxSr1-xCoyFe1-yO3-δ

LSCM:

Chromium doped lanthanum strontium manganite

LSM:

Lanthanum strontium manganite (LaxSr1-xMnO3-δ)

LST:

Lanthanum-doped strontium titanate

MAWE:

Methanol assisted water electrolysis

MCFC:

Molten carbonate fuel cell

NG:

Natural gas

PAFC:

Phosphoric acid fuel cell

PBI:

Polybenzoimidazol

PEM:

Polymer electrolyte membrane

PT:

Parabolic-troughs

PV:

Photovoltaic

R&D:

Research and development

RT:

Room temperature

ScSZ:

Scandia-stabilized zirconia

SFCN:

SmFe0.7Cu0.3-xNixO3-δ

SMR:

Steam-methane reforming

SOE:

Solid Oxide Electrolyte

SOFC:

Solid oxide fuel cell

YSZ:

Yttria stabilized zirconia

References

  1. Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters JAHW (2015) Trends in global CO2 emissions: 2015 Report, The Hague: PBL Netherlands Environmental Assessment Agency; Ispra: European Commission, Joint Research Centre. 2015 PBL publication number: 1803. http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2015-trends-in-global-co2-emisions_2015-report_01803.pdf. Accessed 8 Nov 2016

  2. Bockris JOM (1975) Energy: the solar-hydrogen alternative. Wiley, New York

    Google Scholar 

  3. Bockris JOM (1980) Energy options : real economics and the solar-hydrogen system. Taylor & Francis, London

    Google Scholar 

  4. Giddey S, Badwal SPS, Kulkarni A (2013) Review of electrochemical ammonia production technologies and materials. Int J Hydrog Energy 38:14576–14594

    Article  CAS  Google Scholar 

  5. Bozzano G, Manenti F (2016) Efficient methanol synthesis: Perspectives, technologies and optimization strategies. Prog Energy Combust Sci 56:71–105

    Article  Google Scholar 

  6. Armaroli N, Balzani V (2016) Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem Eur J 22:32–57

    Google Scholar 

  7. Hinkley J, Hayward J, McNaughton R, Edwards J, Lovegrove K (2016) Concentrating solar fuels roadmap: final report. CSIRO, Australia

    Google Scholar 

  8. Herron JA, Kim J, Upadhye AA, Huber GW, Maravelias CT (2015) A general framework for the assessment of solar fuel technologies. Energy Environ Sci 8:126–157

    Article  CAS  Google Scholar 

  9. Philibert C (2014) Technology roadmap: solar thermal electricity—2014 edition. IEA, Paris, France

    Google Scholar 

  10. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278

    Article  CAS  Google Scholar 

  11. Steinfeld A (2005) Solar thermochemical production of hydrogen–a review. Sol Energy 78:603–615

    Article  CAS  Google Scholar 

  12. Badwal SPS, Giddey S, Munnings C (2013) Hydrogen production via solid electrolytic routes. WIREs Energy Environ. 2:473–487

    Article  CAS  Google Scholar 

  13. Decourt B, Lajoie B, Debarre R, Soupa O (2014) Leading the energy transition factbook, hydrogen-based energy conversion—more than storage: system flexibility. SBC Energy Institute. http://www.sbcenergyinstitute.com/Publications/Hydrogen.html. Accessed 2 Nov 2016

  14. Teledyne Energy Systems, Inc (2016) Titan EL. http://www.teledynees.com/our-products/hydrogen-oxygen-generation-systems/titan-el. Accessed 6 Feb 2017

  15. Siemens (2016) Silyzer systeme. http://www.industry.siemens.com/topics/global/en/pem-electrolyzer/silyzer/discovering-pem-technology/Pages/Discovering-pem-technology.aspx. Accessed 2 Nov 2016

  16. Giddey S, Kulkarni A, Badwal SPS (2015) Low emission hydrogen generation through carbon assisted electrolysis. Int J Hydrog Energy 40:70–74

    Article  CAS  Google Scholar 

  17. Clarke RL, Foller PC, Wasson AR (1988) The electrochemical production of hydrogen using a carbonaceous fuel as an anode depolarizer. J Appl Electrochem 18:546–554

    Article  CAS  Google Scholar 

  18. Sethu SP, Gangadharan S, Chan SH, Stimming U (2014) Development of a novel cost effective methanol electrolyzer stack with Pt-catalyzed membrane. J Power Sources 254:161–167

    Article  CAS  Google Scholar 

  19. Delacourt C, Ridgway PL, Kerr JB, Newman J (2008) Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J Electrochem Soc 155:B42–B49

    Article  CAS  Google Scholar 

  20. Badwal SPS, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (2014) Emerging electrochemical energy conversion and storage technologies. Front Chem 2:1–28

    Article  CAS  Google Scholar 

  21. Xu G, Liu R, Wang J (2009) Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe0.7Cu0.3-xNixO3 (x = 0 − 0.3) cathode at atmospheric pressure and lower temperature. Sci China, Ser B Chem 52:1171–1175

    Article  CAS  Google Scholar 

  22. Muthuvel M, Botte GG (2009) Trends in ammonia electrolysis. In: White RE (ed) Modern aspects of electrochemistry, vol 45. Springer, New York, pp 207–245

    Google Scholar 

  23. Ebbesen SD, Jensen SH, Hauch A, Mogensen MB (2014) High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem Rev 114:10697–11073

    Article  CAS  Google Scholar 

  24. Dönitz W, Erdle E (1985) High-temperature electrolysis of water vapor–status of development and perspectives for application. Int J Hydrog Energy 10:291–295

    Article  Google Scholar 

  25. Badwal SPS, Giddey S, Munnings C, Kulkarni A (2014) Review of progress in high temperature solid oxide fuel cells. J Aust Ceram Soc 50:23–37

    CAS  Google Scholar 

  26. Moçoteguy P, Brisse A (2013) A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. Int J Hydrog Energy 38:15887–15902

    Article  Google Scholar 

  27. Mathiesen BV, Ridjan I, Connolly D, Nielsen MP, Vang Hendriksen P, Bjerg Mogensen M, Højgaard Jensen S, Dalgaard Ebbesen S (2013) Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysers. Department of Development and Planning, Aalborg University, Denmark. http://vbn.aau.dk/files/80222058/Technology_data_for_SOEC_alkali_and_PEM_electrolysers.pdf. Accessed 8 Nov 2016

  28. Ewan BCR, Adeniyi OD (2013) A demonstration of carbon-assisted water electrolysis. Energies 6:1657–1668

    Article  CAS  Google Scholar 

  29. Alexander BR, Lee A, Mitchell R, Gür T (2010) Carbon-free hydrogen production in a steam-carbon electrochemical cell. ECS Trans 28:67–76

    Article  CAS  Google Scholar 

  30. Halmann MM, Steinberg M (1998) Greenhouse gas carbon dioxide mitigation: science and technology. CRC press, LLC. https://www.crcpress.com/Greenhouse-Gas-Carbon-Dioxide-Mitigation-Science-and-Technology/Halmann-Steinberg/p/book/9781566702843. Accessed 2 Nov 2016

  31. Alioshin Y, Kohn M, Rothschild A, Karni J (2016) High temperature electrolysis of CO2 for fuel production. J Electrochem Soc 163:F79–F87

    Article  CAS  Google Scholar 

  32. Jensen S, Larsen P, Mogensen M (2007) Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrog Energy 32:3253–3257

    Article  CAS  Google Scholar 

  33. Amar IA, Lan R, Petit CTG, Arrighi V, Tao S (2011) Electrochemical synthesis of ammonia based on a carbonate-oxide composite electrolyte. Solid State Ionics 182:133–138

    Article  CAS  Google Scholar 

  34. Edwards JH, Badwal SPS, Duffy GJ, Lasich J, Ganakas G (2002) The application of solid state ionic technology for novel methods of energy generation and supply. Solid State Ionics 152–153:843–852

    Article  Google Scholar 

  35. Imenes A, Fell C, Stein W (2007) Spectral beam splitter for solar hydrogen production. Proc Sol 7. https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:e8c8de76-709f-4ea4-9d34-83ba09fff05f. Accessed 6 Feb 2017

  36. Agrafiotis C, von Storch H, Roeb M, Sattler C (2014) Solar thermal reforming of methane feedstocks for hydrogen and syngas production—a review. Renew Sustain Energy Rev 29:656–682

    Article  CAS  Google Scholar 

  37. Agrafiotis C, Roeb M, Sattler C (2015) A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sustain Energy Rev 42:254–285

    Article  CAS  Google Scholar 

  38. Yadav D, Banerjee R (2016) A review of solar thermochemical processes. Renew Sustain Energy Rev 54:497–532

    Article  CAS  Google Scholar 

  39. CSIRO (2016) http://www.csiro.au/en/Research/EF/Areas/Solar/Solar-thermal/Solar-thermal-hub. Accessed 2 Nov 2016

  40. US Department of Energy (2014) Fuel cell technologies office, Hydrogen production. http://energy.gov/eere/fuelcells/hydrogen-production. Accessed 2 Nov 2016

  41. Rajavi Y (2013) Concentrating solar power. http://large.stanford.edu/courses/2013/ph240/rajavi1/. Accessed 2 Nov 2016

  42. Wiberg E, Wiberg N, Holleman AF (2001) Inorganic chemistry. Academic press, San Diego, USA

    Google Scholar 

  43. Stolten D (2016) Hydrogen science and engineering: materials, processes, systems and technology, vol 2. Wiley

    Google Scholar 

  44. Yilanci A, Dincer I, Ozturk HK (2009) A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog Energy Combust Sci 35:231–244

    Article  CAS  Google Scholar 

  45. Agrafiotis CC, Pagkoura C, Lorentzou S, Kostoglou M, Konstandopoulos AG (2007) Hydrogen production in solar reactors. Catal Today 127:265–277

    Article  CAS  Google Scholar 

  46. Itoh N, Sanchez MA, Xu W-C, Haraya K, Hongo M (1993) Application of a membrane reactor system to thermal decomposition of CO2. J Membr Sci 77:245–253

    Article  CAS  Google Scholar 

  47. Rodat S, Abanades S, Sans J-L, Flamant G (2010) A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting. Int J Hydrogen Energy 35:7748–7758

    Article  CAS  Google Scholar 

  48. Nakamura N (2012) Method for converting solar thermal energy. US patent no: 8,272,216 B2, 25 September 2012

    Google Scholar 

  49. Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energy 26:185–190

    Article  CAS  Google Scholar 

  50. Perret R (2011) Solar thermochemical hydrogen production research (STCH)—thermochemical cycle selection and investment priority, Sandia National Laboratories SANDIA REPORT: SAND2011-3622. http://energy.gov/sites/prod/files/2014/03/f9/solar_thermo_h2.pdf. Accessed 3 Nov 2016

  51. Vidal A, Denk T, Steinfeld L, Zacarías L, Almería T (2010) Upscaling of a 500 kW solar gasification plant. In: Proceedings of 18th world hydrogen energy conference 2010—WHEC 2010, vol 78, pp 177–81. Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag

    Google Scholar 

  52. Giménez S, Bisquert J (2016) Photoelectrochemical solar fuel production: from basic principles to advanced devices. Springer International Publishing, Cham

    Book  Google Scholar 

  53. Yu J, Takahashi P (2007) Biophotolysis-based hydrogen production by cyanobacteria and green microalgae, Communicating current research and educational topics and trends in applied microbiology. In: Méndez-Vilas A (ed), pp 79–89. http://www.formatex.org/microbio/pdf/Pages79-89.pdf. Accessed 3 Nov 2016

  54. Sen U, Shakdwipee M, Banerjee R (2008) Status of biological hydrogen production. J Sci Ind Res 67:980–993

    CAS  Google Scholar 

  55. Riis T, Hagen EF, Vie PJS, Ulleberg Ø (2006) Hydrogen production and storage R&D priorities and gaps: OECD/IEA, 2006. IEA, Paris, France

    Google Scholar 

  56. Lan R, Tao S (2014) Ammonia as a suitable fuel for fuel cells. Front Energy Res 2(35):4

    Google Scholar 

  57. Giddey S, Badwal SPS, Kulkarni A, Munnings C (2012) A comprehensive review of direct carbon fuel cell technology. Prog Energy Combust Sci 38:360–399

    Article  CAS  Google Scholar 

  58. Rizzuto E, Palange P, Del Prete Z (2014) Characterization of an ammonia decomposition process by means of a multifunctional catalytic membrane reactor. Int J Hydrogen Energy 39:11403–11410

    Article  CAS  Google Scholar 

  59. Colella WG, James BD, Moton JM, Saur G and Ramsden T (2014) Techno-economic analysis of PEM electrolysis for hydrogen production. In: Electrolytic hydrogen production workshop, NREL, Golden, Colorado, 27 February 2014

    Google Scholar 

  60. Laguna-Bercero MA (2012) Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J Power Sources 203:4–16

    Article  CAS  Google Scholar 

  61. Harris DJ, Roberts DG (2013) Coal Gasification and Conversion. In: Osborne D (ed) The coal handbook—towards cleaner production, Volume 2: Coal utilisation. Woodhead Publishing, Philadelphia

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Daniel Roberts for reviewing this manuscript. This article is dedicated to the memories of Late Professor John O’M Bockris whose contribution to Electrochemistry, Solar Fuels, and Hydrogen Economy has been of immense significance for the betterment of this world.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. S. Badwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Badwal, S.P.S., Kulkarni, A.P., Ju, H., Giddey, S. (2017). Solar Fuels. In: Uosaki, K. (eds) Electrochemical Science for a Sustainable Society. Springer, Cham. https://doi.org/10.1007/978-3-319-57310-6_10

Download citation

Publish with us

Policies and ethics

Navigation