Four Principles for Quantum Gravity

  • Chapter
  • First Online:
Gravity and the Quantum

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 187))

Abstract

Four principles are proposed to underlie the quantum theory of gravity. We show that these suffice to recover the Einstein equations. We also suggest that MOND results from a modification of the classical equivalence principle, due to quantum gravity effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The notion of causal sets was introduced by [7]. Causal sets built out of intrinsic structures was developed by [11,12,13].

  2. 2.

    A different proposal for relative locality is in [18].

  3. 3.

    This does not yet address the need for dark matter on scales of clusters and large scale structure. It is possible that these are explained by dark matter while MOND explains the galaxy rotation curves.

  4. 4.

    The notion of causal sets was introduced by [7]. Causal sets built out of intrinsic structures was developed by [11,12,13].

  5. 5.

    This idea is developed in relational quantum theory [23,24,25] and relative locality [14, 15].

  6. 6.

    Related ideas have been suggested previously in [49].

  7. 7.

    The idea that dark energy might be the result of non-locality in loop quantum gravity, or disordered locality [51], was suggested in [52]. The extension of this to dark matter and MOND was studied in an unpublished draft [53].

  8. 8.

    A related argument was proposed in [54].

References

  1. T. Padmanabhan, Limitations on the operational definition of spacetime events and quantum gravity. Class. Quantum Grav. 4, L107–L113 (1987)

    Article  ADS  MATH  Google Scholar 

  2. T. Padmanabhan, T. Roy Choudhury, The Issue of Choosing Nothing: What Determines the Low Energy Vacuum State of Nature?. ar**v:gr-qc/0006018

  3. T. Padmanabhan, Is gravity an intrinsically quantum phenomenon ? Dynamics of Gravity from the Entropy of Spacetime and the Principle of Equivalence. ar**v:hep-th/0205278

  4. T. Padmanabhan, Thermodynamical aspects of gravity: new insights, Rep. Prog. Phys. 73, 046901 (2010). ar**v:0911.5004; Entropy of Static Spacetimes and Microscopic Density of States. ar**v:gr-qc/0308070, Class. Quant. Grav. 21, 4485–4494 (2004); Equipartition of energy in the horizon degrees of freedom and the emergence of gravity. ar**v:0912.3165, Mod. Phys. Lett. A 25, 1129–1136 (2010)

  5. P. Samantray, T. Padmanabhan, Conformal symmetry, riddler space and the AdS/CFT correspondence. ar**v:1308.4667

  6. A. Einstein, What is the Theory of Relativity?, The Times (London), pp. 227–232 in Ideas and Opinions. (New York: Bonanza, 1919)

    Google Scholar 

  7. Luca Bombelli, Joohan Lee, David Meyer, Rafael D. Sorkin, Spacetime as a causal set. Phys. Rev. Lett. 59, 521–524 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Cortês, L. Smolin, The universe as a process of unique events. Phys. Rev. D 90, 084007 (2014). ar**v:1307.6167 [gr-qc]

  9. M. Cortês, L. Smolin, Energetic causal sets. Phys. Rev. D 90, 044035 (2014). ar**v:1308.2206

    Article  ADS  Google Scholar 

  10. M. Cortês, L. Smolin, Spin foam models as energetic causal sets. Phys. Rev. D 93, 084039 (2016). doi:10.1103/PhysRevD.93.084039, ar**v:1407.0032

  11. C. Furey, handwritten note, 2 Sept 2011, personal communication to Lee Smolin. http://www.perimeterinstitute.ca/personal/cfurey/2011notes__.pdf. See also www.perimeterinstitute.ca/personal/cfurey/essay_excerpts_2006.pdf

  12. A. Criscuolo, H. Waelbroeck, Causal set dynamics: a toy model. Class. Quant. Grav. 16(1999), 1817–1832 (1998). ar**v:gr-qc/9811088

    ADS  MATH  MathSciNet  Google Scholar 

  13. F. Markopoulou, Dual formulation of spin network evolution. ar**v:gr-qc/9704013; F. Markopoulou, L. Smolin, Causal evolution of spin net- works, Nucl. Phys. B508 409; Quantum geometry with intrinsic local causality, Phys Rev D 58, 084032

  14. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, The principle of relative locality. Phys. Rev. D 84, 084010 (2011). ar**v:1101.0931[hep-th]

    Article  ADS  MATH  Google Scholar 

  15. L. Freidel, L. Smolin, Gamma ray burst delay times probe the geometry of momentumspace. ar**v:1103.5626

  16. F. Markopoulou, L. Smolin, Holography in a quantum spacetime. ar**v:hep-th/9910146, L. Smolin, The strong and weak holographic principles, Nucl. Phys. B 601(2001), 209–247 (1999), ar**v:hep-th/0003056

  17. L. Smolin, On the nature of quantum fluctuations and their relation to gravitation and the principle of inertia, Classical and Quantum Gravity, 3(1986) 347–359; Stochastic mechanics, hidden variables and gravity, in Quantum Concepts in Space and, Time edn. (Penrose Oxford University Press, C.J. Isham and R, 1985)

    Google Scholar 

  18. L. Freidel, R.G. Leigh, D. Minic, Born Reciprocity in String Theory and the Nature of Spacetime. ar**v:1307.7080; Quantum Gravity, Dynamical Phase Space and String Theory. ar**v:1405.3949; Metastring Theory and Modular Space-time. ar**v:1502.08005; Quantum Spaces are Modular. ar**v:1606.01829

  19. G. ’t Hooft, Dimensional reduction in quantum gravity, Salanfestschrift ed. by A. Alo, J. Ellis, S. Randjbar-Daemi (World Scien- tific,1993). ar**v:gr-qc/9310006.in

  20. L. Susskind, The world as a hologram. J. Math. Phys. 36, 6377 (1995). ar**v:hep-th/9409089

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. S. McGaugh, F. Lelli, J. Schombert, The Radial Acceleration Relation in Rotationally Supported Galaxies. ar**v:1609.05917v1

  22. M. Milgrom, ApJ, 270, 365 (1983). For reviews, see B. Famaey, S. McGaugh, Liv. Rev. Rel. 15, 10 (2012); M. Milgrom, Scale Invariance at low accelerations (aka MOND) and the dynamical anomalies in the Universe. ar**v:1605.07458v2; M. Milgrom, Scholarpedia 9(6), 31410 (2014)

  23. L. Crane, in, Categorical Physics. ar**v:hep-th/9301061, ar**v:hep-th/9308126, in, Knot Theory and Quantum Gravity ed. by J. Baez?(Oxford University Press); Clocks and Categories, is quantum gravity algebraic? J. Math. Phys. 36 6180–6193 (1995). ar**v:gr-qc/9504038; Topological field the- ory as the key to quantum gravity

  24. L. Smolin, The strong and weak holographic principles. Nucl. Phys. B 601, 209–247 (2001). ar**v:hep-th/0003056

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. C. Rovelli, Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996). ar**v:quant-ph/9609002

  26. For a review see, M. Rangamani, T. Takayanagi, Holographic Entanglement Entropy. ar**v:1609.01287

  27. W.G. Unruh, Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  28. T. Jacobson, Entanglement equilibrium and the Einstein equation. ar**v:1505.04753

  29. S. Weinberg, Dynamics at Infinite Momentum, Phys. Rev. 150, 1313 (1966); R.P. Feynman (1969) The Behavior of Hadron Collisions at Extreme Energies. High Energy Collisions: Third International Conference at Stony Brook, N.Y. Gordon & Breach. pp. 237–249. ISBN 978-0-677-13950-0; J. Bjorken, E. Paschos, (1969) Inelastic Electron-Proton and ?-Proton Scattering and the Structure of the Nucleon. Phys. Rev. 185(5): 1975–1982. Bibcode:1969 PhRv..185.1975B. doi:10.1103/PhysRev.185.1975; J.D. Bjorken, Asymptotic sum rules at infinite momentum, Published in Phys. Rev. 179, 1547–1553 (1969); J.B. Kogut*, D,E. Soper, Quantum electrodynamics in the infinite-momentum frame, Phys. Rev. D 1, 2901–2914 (1970); J. Kogut, L. Susskind, The Parton Picture of Elementary Particles, Phys. Rep. 8, 75 (1973)

  30. D.M. Greenberger, The Disconnect Between Quantum Mechanics and Gravity. ar**v:1011.3719

  31. L. Crane, L. Smolin, Renormalizability of general relativity on a background of spacetime foam, Nucl. Phys. B 267, 714–757 (1986); Spacetime foam as the universal regulator, Second award, Gravity Research Foundation 1985, Gen. Relat. Gravit. 17, 1209 (1985)

    Google Scholar 

  32. S. Carlip, Dimensional reduction in causal set gravity. ar**v:1506.08775, Class. Quantum Grav. 32, 232001; L. Crane, L. Smolin, Renormalizability of general relativity on a background of spacetime foam, Nucl. Phys. B 267, 714–757 (1986); Gen. Relat. Gravit. 17(1985), 1209 (2015)

  33. S. Kolekar, T. Padmanabhan (2015), Indistinguishability of thermal and quantum fluctuations, S. Kolekar, T Padmanabhan, Classical and Quantum Gravity, 32(20). ar**v:1308.6289

  34. T. Jacobson, Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995). ar**v:gr-qc/9504004

  35. L. Susskind, Strings, black holes and Lorentz contractions, ar**v:hep-th/9308139; Phys. Rev. Lett. 71, 2367, (1993); Phys. Rev. D 49 (1994) 6606; D50, 2700 (1994); L. Susskind, P. Griffin, Partons and black holes. ar**v:hep-th/9410306

  36. S. Deser, O. Levin, Accelerated Detectors and Temperature in (Anti) de Sitter Spaces. Class. Quant. Grav. 14, L163–L168 (1997). doi:10.1088/0264-9381/14/9/003, http://arxiv.org/abs/gr-qc/9706018

  37. B. Czech, J.L. Karczmarek, F. Nogueira, M. Van Raamsdonk, Rindler Quantum Gravity. ar**v:1206.1323

  38. V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer, M.P. Heller, A hole-ographic spacetime, Journal-ref: Phys. Rev. D 89, 086004 (2014). ar**v:1305.085; V. Balasubramanian, B. Czech, B.D. Chowdhury, J. de Boer, The entropy of a hole in spacetime, JHEP 1310, 220 (2013)

  39. M. Parikh, P. Samantray, Rindler-AdS/CFT. ar**v:1211.7370

  40. F. Lelli, S.S. McGaugh, J.M. Schombert, Astron. J. (2016). ar**v:1606.09251

  41. M. Milgrom, R.H. Sanders, Rings and shells of dark matter as MOND artifacts, Astrophys. J. 678(1), 131–143, (2008). ar**v:0709.2561

  42. S.S. McGaugh, Astrophys. J. 683, 137 (2008). ar**v:0804.1314

    Article  ADS  Google Scholar 

  43. R.B. Tully, J.R. Fisher, Astron. Astrophys. 54, 661 (1977)

    ADS  Google Scholar 

  44. R.H. Sanders, The published extended rotation curves of spiral galaxies: confrontation with modified dynamics. ar**v:astro-ph/9606089, Astrophys. J. 473, 117

  45. S. McGaugh, F. Lelli, J. Schombert, The small scatter of the baryonic tully-fisher relation, Astrophys. J. Lett. 816(1), article id. L14, 6D (2016). ar**v:1512.04543

  46. E.M. Di Teodoro, F. Fraternali, S.H. Miller, Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z 1, Astrophys. Galaxies (astro-ph.GA). ar**v:1602.04942 [astro-ph.GA]

  47. S.H. Miller, R.S. Ellis, M. Sullivan, K. Bundy, A.B. Newman, T. Treu, The Assembly History of Disk Galaxies: II. Probing the Emerging Tully-Fisher Relation During \(1<z<1.7\). ar**v:1201.4386 [astro-ph.CO]

  48. J Bekenstein, J. Magueijo, MOND habitats within the solar system. doi:10.1103/PhysRevD.73.103513, ar**v:astro-ph/0602266

  49. M. Milgrom, The modified dynamics as a vacuum effect, Phys. Lett. A 253, 273–279 (1999). doi:10.1016/S0375-9601(99)00077-8, ar**v:astro-ph/9805346; Dynamics with a nonstandard inertia-acceleration relation: an alternative to dark matter in galactic systems, Ann. Phys. 229(2), 384–415. ar**v:astro-ph/9303012

  50. R.P. Woodard, Nonlocal metric realizations of MOND, Can. J. Phys. 93(2), 242–249. ar**v:1403.6763

  51. Fotini Markopoulou, Lee Smolin, Disordered locality in loop quantum gravity states, Class. Quant. Grav. 24, 3813–3824 (2007). ar**v:gr-qc/0702044

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Chanda Prescod-Weinstein, Lee Smolin, Disordered locality as an explanation for the dark energy. Phys. Rev. D 80, 063505 (2009). ar**v:0903.5303 [hep-th]

  53. F. Markopoulou, I. Premont-Schwarz, L. Smolin, Macroscopic deviations from Newtonian gravity from quantum gravity, unpublished manuscript (2005)

    Google Scholar 

  54. M.H.P.M. van Putten, Galaxy rotation curves in de Sitter space. ar**v:1411.2665

  55. H. Narnhofer, I. Peter, W. Thirring, Int. J. Mod. Phys. B 10, 1507 (1996)

    Article  ADS  Google Scholar 

  56. M. Cortes, H. Gomes, L. Smolin, Time asymmetric extensions of general relativity, Phys. Rev. D 92, 043502 (2015). ar**v:1503.06085; M. Cortes, A.R. Liddle, L. Smolin, Cosmological signatures of time-asymmetric gravity. ar**v:1606.01256

  57. L. Smolin, Dynamics of the cosmological and Newton’s constant. ar**v:1507.01229. Class. Q. Gravit. 33(2). http://dx.doi.org/10.1088/0264-9381/33/2/025011

  58. L. Smolin, What is the problem of quantum gravity?, Introduction to Ph.D. thesis, also IAS preprint, Sept 1979

    Google Scholar 

  59. P. Candelas, D.W. Sciama, Irreversible thermodynamics of black holes, Phys. Rev. Lett. 38, 1372 (1977); D.W. Sciama, Black holes and fluctuations of quantum particles: an Einstein synthesis, in Relativity, Quanta, and Cosmology in the Development of the Scientific Thought of Albert Einstein, vol. II, ed. by M. Pantaleo, dir., F. De Finis (Giunti Barb‘era, Firenze, 1979)

    Google Scholar 

  60. Juan M. Maldacena, hep-th/9711200, hep-th/9803002; E. Witten, hep-th/9802150, hep-th/9803131; S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428 (1998) 105-114, hep-th/9802109. For a review, see, O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Large N Field Theories, String Theory and Gravity hep-th/9905111

    Google Scholar 

  61. H. Casini, M. Huerta, R.C. Myers, Towards a derivation of holographic entanglement entropy. JHEP 1105, 036 (2011). doi:10.1007/JHEP05(2011)036, ar**v:1102.0440 [hep-th]

  62. R. Fareghbal, A. Naseh, Rindler Contracted-CFT Correspondence, JHEP 06, 134 (2014). doi:10.1007/JHEP06(2014)134, ar**v:1404.3937; Aspects of Flat/CCFT Correspondence. Class. Quantum Grav. 32, 135013 (2015). doi:10.1088/0264-9381/32/13/135013, ar**v:1408.6932

  63. A. Bagchi, The BMS/GCA correspondence. Phys. Rev. Lett. 105, 171601 (2010), doi:10.1103/PhysRevLett.105.171601, ar**v:1006.3354

  64. F.J. Herranz, Non-standard quantum so(3,2) and its contractions, J. Phys. A 30, 6123-6129 (1997). doi:10.1088/0305-4470/30/17/019, ar**v:q-alg/9704006

  65. P. Kosiski, J. Lukierski, P. Malanka, On kappa-deformed D=4 quantum conformal group. ar**v:hep-th/0312227; F. Falceto, K. Gawedzki, On quantum group symmetries of conformal field theories. ar**v:hep-th/9109023

  66. G. Moore, N. Reshetikhin, A comment on quantum group symmetry in conformal field theory, Nucl. Phys. B 328(3), 557–574, 25 December 1989; S. Meljanac, A. Pachol, D. Pikutic, Twisted conformal algebra related to kappa-Minkowski space Phys. Rev. D 92, 105015 (2015). doi:10.1103/PhysRevD.92.105015, ar**v:1509.02115

  67. Jae-Weon Lee, Hyeong-Chan Kim, Jungjai Lee, Gravity from Quantum Information. J. Korean Phys. Soc. 63, 1094 (2013). doi:10.3938/jkps.63.1094, ar**v:1001.5445

  68. S.S. McGaugh, Milky way mass models and MOND, Astrophys. J. 683, 137 (2008). ar**v:0804.1314

Download references

Acknowledgements

I would like to thank Andrzej Banburski, Jacob Barnett, Linqing Chen, Marina Cortes, Bianca Dittrich, Laurent Freidel, Henriques Gomes, Andrew Liddle, Stacy McGaugh, Mordehai Milgrom, Krishnamohan Parattu, Percy Paul and Vasudev Shyam for very helpful discussions and encouragement. I am also indebted to Stacy McGaugh for permission to reproduce Fig. 1 and its caption from [21].

This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation. This research was also partly supported by grants from NSERC, FQ** and the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Smolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Smolin, L. (2017). Four Principles for Quantum Gravity. In: Bagla, J., Engineer, S. (eds) Gravity and the Quantum. Fundamental Theories of Physics, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-319-51700-1_26

Download citation

Publish with us

Policies and ethics

Navigation