Technological Advances in Biohydrogen Production from Microalgae

  • Chapter
  • First Online:
Algal Biofuels

Abstract

Hydrogen has been recognized as a promising alternative to traditional sources of energy, as it is renewable, readily available, environment friendly and does not produce harmful emissions, when burned. Biological hydrogen production has been carried out largely using microalgae and bacteria (dark fermentation). Microalgae can generate hydrogen either by biophotolysis of water or through photofermentation. Two enzymes, viz., hydrogenase and nitrogenase, perform critical tasks in biological hydrogen production processes. Hydrogenase enzyme has been observed in facultative anaerobic bacteria and green algae such as Scenedesmus obliquus, Chlorococcum littorale, Platymonas subcordiformis and Chlorella fusca. Conversely, microalgae such as Rhodopseudomonas capsulate, Rhodobacter sphaeroides and Rhodospirillum rubrum have been reported for photofermentative hydrogen production. Even though, microalgae have been successfully explored at a laboratory scale for biohydrogen production, low yield has been recognized as a limiting factor for its bulk production and commercialization. Current research is therefore engrossed more on overcoming the key challenges such as O2 sensitivity of hydrogenase enzyme, solar conversion efficiencies for CO2 fixation through genetic engineering and design of low-cost photobioreactors. This chapter primarily includes the various processes for biohydrogen generation using microalgae (photofermentation, direct biophotolysis and indirect biophotolysis), their advantages and limitations. Emphases have also been given on strategies to mitigate the present challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amos W (2004) Updated cost analysis of photobiological hydrogen production from Chlamydomonas reinhardtii green algae, NREL/MP-560-35593. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Antal T, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120

    Article  CAS  Google Scholar 

  • Asada Y, Kawamura S (1986) Screening for cyanobacteria that evolve molecular hydrogen under dark and anaerobic conditions. J Ferment Bioeng 64:553–556

    Article  Google Scholar 

  • Bélafi-Bakó K, Búcsú D, Pientka Z, Bálint B, Herbel Z, Kovács K, Wessling M (2006) Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen. Int J Hydro Energy 31:1490–1495

    Article  Google Scholar 

  • Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  CAS  Google Scholar 

  • Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142:70–77

    Article  CAS  Google Scholar 

  • Bishop M, Bishop C (1987) Photosynthesis and carbon dioxide fixation. J Chem Educ 64:302–305

    Article  CAS  Google Scholar 

  • Cao H, Zang L, Melis A (2001) Bioenergetic and metabolic processes for survival of sulfur deprived Dunaliella salina (Chlorophyta). J Appl Phycol 13:25–34

    Article  CAS  Google Scholar 

  • Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotech 31:230–232

    Article  CAS  Google Scholar 

  • Dauvillée V, Chochois M, Steup S, Haebel N, Eckermann G, Ritte J et al (2006) Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J 48:274–285

    Article  Google Scholar 

  • Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol 131:27–33

    Article  CAS  Google Scholar 

  • Dubini A, Ghirardi ML (2014) Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res 123:241–253

    Article  Google Scholar 

  • Fascetti E, Todini O (1995) Rhodobacter sphaeroids RV cultivation and hydrogen production in a one and two stage chemostat. Appl Microbiol Biotechnol 44:300–305

    Article  CAS  Google Scholar 

  • Flores E, Frias J, Rubio L, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria. Photosynth Res 83:117–133

    Article  CAS  Google Scholar 

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132

    Article  CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    Article  CAS  Google Scholar 

  • Gao H, Wang Y, Fei X, Wright DA, Spalding MH (2015) Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. Plant J. 82

    Google Scholar 

  • Gfeller R, Gibbs M (1984) Fermentative metabolism of chlamydomonas reinhardtii. Plant Physiol 75:212–218

    Article  CAS  Google Scholar 

  • Gimpel JA, Henríquez V, Stephen PM (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity front. Microbiology 6:1376

    Google Scholar 

  • Greenbaum E, Lee J, Tevault C, Blankinship S, Mets L (1995) Correction CO2 fixation and photoevolution of H2 and O2 in a mutant of Chlamydomonas lacking photosystem I. Nature 376:438–441

    Article  CAS  Google Scholar 

  • Hena S (2016) Hydrogen Production by Microalgae, in Recent Advances in Microalgal. Biotechnology, 731 Gull Ave, Foster City, CA 94404, USA, OMICS Group eBooks 1–11

    Google Scholar 

  • Hwang JH, Kim HC, Choi JA, Abou Shanab R, Dempsey BA, Regan JM et al (2014) Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun 5:3234

    Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials: review. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Koku H, Eroglu I, Gunduz U, Yucel M, Turker L (2003) Kinetics of biohydrogen production by the photosynthetic bacterium Rhodobacter spheroids. Int J Hydrog Energ 28:381–388

    Article  CAS  Google Scholar 

  • Kosourov S, Makarova V, Fedorov AS, Tsygankov A, Seibert M, Ghirardi ML (2005) The effect of sulfur re-addition on H2 photoproduction by sulfur-deprived green algae. Photosynth Res 85:295–305

    Article  CAS  Google Scholar 

  • Kosourov SN, Ml G, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrog Energy 36(3):2044–2048

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005a) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  CAS  Google Scholar 

  • Lin HD, Liu BH, Kuo TT, Tsai HC, Feng TY, Huang CC et al (2013) Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp DT. Bioresour Technol 143:154–162

    Article  CAS  Google Scholar 

  • Llama M, Serra J, Rao K, Hall D (1979) Isolation and characterization of the hydrogenase activity from the non-heterocystous cyanobacterium Spirulina maxima. FEBS Lett 98:342–346

    Article  CAS  Google Scholar 

  • McCully, McKinlay J (2016) Disrupting Calvin cycle phosphoribulokinase activity in Rhodopseudomonas palustris increases the H2 yield and specific production rate proportionately. Int J Hydrog Energy 41:4143–4149

    Article  CAS  Google Scholar 

  • Miura Y (1995) Hydrogen production by biophotolysis based on microalgal photosynthesis. Process Biochem 30:1–7

    Article  CAS  Google Scholar 

  • Miura Y, Akano T, Fukatsu KH, Miyasaka K, Mizoguchi T et al (1997) Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Convers Manag 38:S533–S537

    Article  CAS  Google Scholar 

  • Miura Y, Ohta S, Mano M, Miyamoto K (1986) Isolation and characterization of a unicellular marine green alga exhibiting high activity in dark hydrogen production. Agric Biol Chem 50:2837–2844

    CAS  Google Scholar 

  • Miyamoto I, Hallenbeck P, Benemann J (1979) Hydrogen production by the thermophilic alga Mastigocladus laminosus: effects of nitrogen, temperature, and inhibition of photosynthesis. Appl Environ Microbiol 28:440–446

    Google Scholar 

  • Nasr M, Tawfik A, Ookawara S Suzuki M (2013a) Prediction of hydrogen production using artificial neural network, in Seventeenth International Water Technology Conference, IWTC17, stanbul, 5–7 Nov 2013

    Google Scholar 

  • Nasr M, Tawfik A, Ookawara S, Suzuki M (2013b) Biological hydrogen production from starch wastewater using a novel up-flow anaerobic staged reactor. Bio. Resources 8:4951–4968

    Google Scholar 

  • Nasr M, Tawfik A, Ookawara S, Suzuki M (2013c) Environmental and economic aspects of hydrogen and methane production from starch wastewater industry. J Water Environ Technol 11:463–475

    Article  Google Scholar 

  • Nasr M, Tawfik A, Ookawara S, Suzuki M (2013d) Hydrogen production from starch wastewater using anaerobic sludge immobilized on maghemite nanoparticle, in Seventeenth International Water Technology Conference, IWTC17, Istanbul, 5–7 Nov 2013

    Google Scholar 

  • Nasr M, Tawfik A, Ookawara S, Suzuki M (2014a) Prediction of hydrogen production from starch wastewater using artificial neural networks. Int Water Technol J 1:36–44

    Google Scholar 

  • Nasr M, Tawfik A, Ookawara S, Suzuki M, Kumari S, Bux F (2015) Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. J Indus Eng Chem 21:500–506

    Article  CAS  Google Scholar 

  • Nasr M, Tawfik A, Suzuki M, Ookawara S (2014b) Mathematical modeling of bio-hydrogen production from starch wastewater via up-flow anaerobic staged reactor. Desalin Water Treat 52:1–9

    Article  Google Scholar 

  • Oey M, Ross IL, Stephen E, Steinbeck J, Wolf J, Radzun KA, Kügler J et al (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS One 8, e61375

    Article  CAS  Google Scholar 

  • Oey M, Sawyer AL, Ross IL, Hankamer B (2016a) Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J 14:1487–1499

    Google Scholar 

  • Oh Y, Scol E, Kim M, Park S (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P 4. Int J Hydrog Energy 29:1115–1121

    CAS  Google Scholar 

  • Oldroyd G, Dixon R (2014) Biotechnological solutions to the nitrogen problem Current Opin. Biotechnology 26:19–24

    CAS  Google Scholar 

  • Pinto TS, Malcata FX, Arrabac JD, Silva JM, Spreitzer RJ, Esquıvel MG (2013) Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol 97:5635–5643

    Article  CAS  Google Scholar 

  • Prince R, Kheshgi H (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31

    Article  CAS  Google Scholar 

  • Ruehle T, Hemschemeier A, Melis A, Happe T (2008) A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol 8:107

    Article  Google Scholar 

  • Schnackenberg J, Ikemoto H, Miyachi S (1996) Photosynthesis and hydrogen evolution under stress conditions in a CO2-tolerant marine green alga, Chlorococcum littorale. J Photochem Photobiol B Biol 34:59–62

    Article  CAS  Google Scholar 

  • Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G (2012) Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157:613–619

    Article  CAS  Google Scholar 

  • Singh N, Sonani R, Rastogi R, Madamwar D (2015) The phycobilisomes: an early requisite for efficient photosynthesis in cyanobacteria. EXCLI J:268–289

    Google Scholar 

  • Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73:873–882

    Article  CAS  Google Scholar 

  • Tiwari A, Pandey A (2012) Cyanobacterial hydrogen production–a step towards clean environment: review. Int J Hydrog Energy 37:139–150

    Article  CAS  Google Scholar 

  • Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T et al (2011) Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23:2619–2630

    Article  CAS  Google Scholar 

  • Weissman J, Benemann J (1977) Hydrogen production by nitrogen-starved cultures of Anabaena cylindrical. Appl Environ Microbiol 33:123–131

    CAS  Google Scholar 

  • Winkler M, Heil B, Heil B, Happe T (2002) Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta 1576:330–334

    Article  CAS  Google Scholar 

  • Wu S, Xu L, Huang R, Wang Q (2011) Improved biohydrogen production with an expression of codon-optimized hem H and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresour Technol 102:2610–2616

    Article  CAS  Google Scholar 

  • Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by mixed culture of Clostridium butyricum and Rhodobacter sp M-19. Biotechnol Lett 20:895–899

    Article  CAS  Google Scholar 

  • Zhang X, Rong J, Chen H, He C, Wang Q (2014) Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Front Energy Res 2:1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheena Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumari, S., Nasr, M., Kumar, S. (2017). Technological Advances in Biohydrogen Production from Microalgae. In: Gupta, S., Malik, A., Bux, F. (eds) Algal Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-319-51010-1_17

Download citation

Publish with us

Policies and ethics

Navigation