Conceptual Basis and Principles of Radiation Oncology

  • Chapter
  • First Online:
Breast Cancer
  • 123k Accesses

Abstract

Radiation oncology is a wide discipline of human sciences that joints many of the conceptual basis of physics, biology, and medicine and is funded on the knowledge of the fundamental principles of (1) cancer and normal tissue molecular biology, (2) basic and medical physics and dosimetry, (3) physical and biologic interaction of radiation with normal and malignant tissues, (4) high-precision imaging, and (5) the effect of the combined use of radiations with other treatment modalities, such as surgery, drugs, and other physical energies. The multidisciplinary education of radiation oncologists is the foundation for a high quality of the patient’s care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nguyen TK, Goodman CD, Boldt RG et al (2016) Evaluation of health economics in radiation oncology: a systematic review. Int J Radiat Oncol Biol Phys 94(5):1006–1014

    Article  PubMed  Google Scholar 

  2. Lutz ST, Jones J, Chow E (2014) Role of radiation therapy in palliative care of the patient with cancer. J Clin Oncol 32(26):2913–2919

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barton MB, Jacob S, Shafiq J et al (2014) Estimating the demand from radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother Oncol 112:140–144

    Article  PubMed  Google Scholar 

  4. Atun R, Jaffray DA, Barton MB et al (2015) Expanding global access to radiotherapy. Lancet Oncol 16(10):1153–1186

    Article  PubMed  Google Scholar 

  5. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):e359–e386

    Article  CAS  PubMed  Google Scholar 

  6. Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the Human Development Index (2008-2030): a population-based study. Lancet Oncol 13(8):790–801

    Article  PubMed  Google Scholar 

  7. Borras JM, Lievens Y, Barton M et al (2016) How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis. Radiother Oncol 119(1):5–11

    Article  PubMed  Google Scholar 

  8. Debenham BJ, Hu KS, Harrison LB (2013) Present status and future directions of intraoperative radiotherapy. Lancet Oncol 14(11):e457–e464

    Article  PubMed  Google Scholar 

  9. Begg AC, Stewart FA, Vens C (2011) Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 11(4):239–253

    Article  CAS  PubMed  Google Scholar 

  10. Connell PP, Hellman S (2009) Advances in radiotherapy and implications for the next century: a historical perspective. Cancer Res 69(2):383–392

    Article  CAS  PubMed  Google Scholar 

  11. Kamada T, Tsujii H, Blakely EA et al (2015) Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol 16(2):e93–e100

    Article  PubMed  Google Scholar 

  12. Aronowitz JN (2015) Afterloading: the technique that rescued brachytherapy. Int J Radiat Oncol Biol Phys 92(3):479–487

    Article  PubMed  Google Scholar 

  13. Segedin B, Petric P (2016) Uncertainties in target volume delineation in radiotherapy - are they relevant and what can we do about them? Radiol Oncol 50(3):254–262

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grégoire V, Mackie TR (2011) State of the art on dose prescription, reporting and recording in intensity-modulated radiation therapy (ICRU report no. 83). Cancer Radiother 15(6–7):555–559

    Article  PubMed  Google Scholar 

  15. FitzGerald TJ, Bishop-Jodoin M, Followill DS (2016) Imaging and data acquisition in clinical trials for radiation therapy. Int J Radiat Oncol Biol Phys 94(2):404–411

    Article  PubMed  Google Scholar 

  16. Kontaxis C, Bol GH, Lagendijk JJ, Raaymakers BW (2015) Towards adaptive IMRT sequencing for the MR-linac. Phys Med Biol 60(6):2493–2509

    Article  PubMed  Google Scholar 

  17. Heath A (2016) Radiobiology. In: Radiation therapy study guide. Springer, New York, pp 17–26

    Chapter  Google Scholar 

  18. Bentzen SM, Constine LS, Deasy JO et al (2010) Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76(3 Suppl):3–9

    Article  Google Scholar 

  19. Marks LB, Yorke ED, Jackson A et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76(3 Suppl):10–19

    Article  Google Scholar 

  20. Lee JL, Harris JR (2009) Innovations in radiation therapy for breast cancer. Breast 18(3 Suppl):103–111

    Article  Google Scholar 

  21. Kunkler IH, Ward C, Langdon SP (2015) Technical innovation in adjuvant radiotherapy: evolution and evaluation of new treatments for today and tomorrow. Breast 24(2 Suppl):114–119

    Article  Google Scholar 

  22. Chetty IJ, Martel MK, Jaffray DA et al (2015) Technology for innovation in radiation oncology. Int J Radiat Oncol Biol Phys 93(3):485–492

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Orecchia M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orecchia, R. (2017). Conceptual Basis and Principles of Radiation Oncology. In: Veronesi, U., Goldhirsch, A., Veronesi, P., Gentilini, O., Leonardi, M. (eds) Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48848-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48848-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48846-2

  • Online ISBN: 978-3-319-48848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation