Crystal Plasticity Fem Study of The Effects of BW Hardening Model Parameters on Nano-Indentation Deformation Behaviour of Copper Single Crystal

  • Conference paper
TMS 2014: 143rd Annual Meeting & Exhibition
  • 3187 Accesses

Abstract

A crystal plasticity finite element method (CPFEM) model has been developed to investigate the effects of BW hardening model parameters on nano-indentation deformation behaviour and texture evolution. The developed model has been validated by comparison with experimental observations. The simulated results show that the changes of the reference value of slip γ0 and the reference strain rate à affect the indentation mechanical behaviour most significantly, but the changes of the initial hardening modulus h0 affect the indentation mechanical behaviour most insignificantly. It also has been found the variations of the reference value of slip γ0 do not affect the pole figure evolution while pole figures change with the changing of adot value. Both γ0 and adot do not change the value of equivalent strain rate significantly

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vlassak, J.J. and W.D. Nix, Measuring the Elastic Properties of Anisotropic Materials by Means of Indentation Experiments. Journal of the Mechanics and Physics of Solids, 1994. 42(8): p. 1223–1245.

    Article  Google Scholar 

  2. Fleck, N.A. and J.W. Hutchinson, Strain gradient plasticity. Advances in Applied Mechanics, Vol 33, 1997. 33: p. 295–361.

    Article  Google Scholar 

  3. Fleck, N.A., et al., Strain Gradient Plasticity — Theory and Experiment. Acta Metallurgica Et Materialia, 1994.42(2): p. 475–487.

    Article  Google Scholar 

  4. Taylor, G., Plastic strain in metals. J Inst Metals, 1938. 62: p. 307–324.

    Google Scholar 

  5. Wu, T.Y., J.L. Bassani, and C. Laird, Latent Hardening in Single-Crystals .1. Theory and Experiments. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1991.435(1893): p. 1–19.

    Article  Google Scholar 

  6. Bassani, J.L. and T.Y. Wu, Latent Hardening in Single-Crystals .2. Analytical Characterization and Predictions. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1991. 435(1893): p. 21–41.

    Article  Google Scholar 

  7. Huang, Y., et al., A study of microindentation hardness tests by mechanism-based strain gradient plasticity. Journal of Materials Research, 2000.15(8): p. 1786–1796.

    Article  Google Scholar 

  8. Huang, Y., et al., A model of size effects in nano-indentation. Journal of the Mechanics and Physics of Solids, 2006. 54(8): p. 1668–1686.

    Article  Google Scholar 

  9. Nix, W.D. and H.J. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998. 46(3): p. 411–425.

    Article  Google Scholar 

  10. Gao, H.J. and Y.G. Huang, Geometrically necessary dislocation and size-dependent plasticity. Scripta Materialia, 2003. 48(2): p. 113–118.

    Article  Google Scholar 

  11. Gao, H., et al., Mechanism-based strain gradient plasticity — I. Theory. Journal of the Mechanics and Physics of Solids, 1999. 47(6): p. 1239–1263.

    Article  Google Scholar 

  12. Huang, Y., et al., Mechanism-based strain gradient plasticity — II. Analysis. Journal of the Mechanics and Physics of Solids, 2000. 48(1): p. 99–128.

    Article  Google Scholar 

  13. Liu, Y., et al., Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale. Journal of the Mechanics and Physics of Solids, 2005. 53(12): p. 2718–2741.

    Article  Google Scholar 

  14. Liu, Y., et al., Orientation effects in nanoindentation of single crystal copper. International Journal of Plasticity, 2008. 24(11): p. 1990–2015.

    Article  Google Scholar 

  15. Casals, O., J. Ocenasek, and J. Alcala, Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals. Acta Materialia, 2007. 55(1): p. 55–68.

    Article  Google Scholar 

  16. Alcala, J., O. Casals, and J. Ocenasek, Micromechanics of pyramidal indentation in fcc metals: Single crystal plasticity finite element analysis. Journal of the Mechanics and Physics of Solids, 2008. 56(11): p. 3277–3303.

    Article  Google Scholar 

  17. Asaro, R.J., Crystal Plasticity. Journal of Applied Mechanics-Transactions of the Asme, 1983. 50(4B): p. 921–934.

    Article  Google Scholar 

  18. Taylor, G.I., The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical. Proceedings of the Royal Society of London. Series A, 1934. 145(855): p. 362–387.

    Article  Google Scholar 

  19. Kocks, U.F. and T.J. Brown, Latent hardening in aluminum. Acta Metallurgica, 1966.14(2): p. 87–98.

    Article  Google Scholar 

  20. Keh, N.a., Latent hardening in iron single crystals Acta Metallurgica, 1966. 14: p. 961–973.

    Article  Google Scholar 

  21. Basinski, J., Latent hardening and the flow stress in copper single crystals J. Phys, 1967. 45: p. 707–735.

    Google Scholar 

  22. Havner, K.S. and A.H. Shalaby, A Simple Mathematical Theory of Finite Distortional Latent Hardening in Single Crystals. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1977. 358(1692): p. 47–70.

    Article  Google Scholar 

  23. Hutchinson, J.W., Elastic-Plastic Behaviour of Polycrystalline Metals and Composites. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1970. 319(1537): p. 247–272.

    Article  Google Scholar 

  24. Robert J. A., W.H. John, and Y.W. Theodore, Micromechanics of Crystals and Polycrystals, in Advances in Applied Mechanics. 1983, Elsevier. p. 1–115.

    Google Scholar 

  25. Bassani, J.L. and T.-Y. Wu, Latent Hardening in Single Crystals II. Analytical Characterization and Predictions. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991. 435(1893): p. 21–41.

    Article  Google Scholar 

  26. Hutchinson, J.W., Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1976. 348(1652): p. 101–127.

    Article  Google Scholar 

  27. Kumar, A.V. and C.H. Yang, Study of work hardening models for single crystals using three dimensional finite element analysis. International Journal of Plasticity, 1999. 15(7): p. 737–754.

    Article  Google Scholar 

  28. R, H., Generalized constitutive relations for incremental deformation of metal crystals by multislip. Journal of the Mechanics and Physics of Solids, 1966. 14(2): p. 95–102.

    Article  Google Scholar 

  29. YG, H., A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. 1991, Harvard University.

    Google Scholar 

  30. Huang, Y.G., Mech. Report 178. 1991, Harvard University.

    Google Scholar 

  31. Wei, Y.G., X.Z. Wang, and M.H. Zhao, Size effect measurement and characterization in nanoindentation test. Journal of Materials Research, 2004. 19(1): p. 208–217.

    Article  Google Scholar 

  32. McElhaney, K.W., J.J. Vlassak, and W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. Journal of Materials Research, 1998. 13(5): p. 1300–1306.

    Article  Google Scholar 

  33. Voyiadjis, G.Z. and R. Peters, Size effects in nanoindentation: an experimental and analytical study. Acta Mechanica, 2010. 211(1–2): p. 131–153.

    Article  Google Scholar 

  34. Inamura, T., et al., Anisotropy and temperature dependence of Young’s modulus in textured TiNbAI biomedical shape memory alloy. Materials Transactions, 2005.46(7): p. 1597–1603.

    Article  Google Scholar 

  35. Oliver, W.C. and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments. Journal of Materials Research, 1992. 7(6): p. 1564–1583.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Liu, M., Lu, C., Tieu, K.A. (2014). Crystal Plasticity Fem Study of The Effects of BW Hardening Model Parameters on Nano-Indentation Deformation Behaviour of Copper Single Crystal. In: TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48237-8_41

Download citation

Publish with us

Policies and ethics

Navigation