Noncoding RNAs in Platelet Biology

  • Chapter
  • First Online:
Platelets in Thrombotic and Non-Thrombotic Disorders

Abstract

Noncoding RNAs (ncRNA) account for the majority of the human cellular transcriptome. Advances in sequencing technologies and analytic approaches continue to identify novel ncRNAs. A large amount of research has investigated the role of microRNAs (miRNAs) in megakaryopoiesis and platelet biology, whereas relatively little is known about other ncRNAs. miRNAs affect basic development and physiology by regulating protein translation, and in doing so miRNAs regulate hematopoiesis and megakaryopoiesis. To date, platelet miRNA studies have focused on their use as biomarkers and as tools for understanding basic mechanisms of megakaryocyte/platelet gene expression, but there is a rapidly expanding appreciation for miRNAs as mediators or modifiers of disease, the potential for platelet miRNAs to affect gene expression in other tissues, and as therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, Ghevaert C, Mountford JC, Marenah L, Elliott DJ, Santibanez-Koref M, Jackson MS (2015) Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. doi:10.1182/blood-2015-06-649434

    PubMed  Google Scholar 

  • Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A, Salmena L, Sampieri K, Haveman WJ, Brogi E, Richardson AL, Zhang J, Pandolfi PP (2010) Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42(5):454–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, Huang M, Shields DJ, Lindquist JN, Lapinski PE, King PD, Weis SM, Cheresh DA (2010) MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16(8):909–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badrnya S, Baumgartner R, Assinger A (2014) Smoking alters circulating plasma microvesicle pattern and microRNA signatures. Thromb Haemost 112(1):128–136

    Article  CAS  PubMed  Google Scholar 

  • Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barroga CF, Pham H, Kaushansky K (2008) Thrombopoietin regulates c-Myb expression by modulating micro RNA 150 expression. Exp Hematol 36(12):1585–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336(6078):233–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berckmans RJ, Nieuwland R, Böing AN, Romijn FP, Hack CE, Sturk A (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 85(4):639–646

    CAS  PubMed  Google Scholar 

  • Bhagat TD, Zhou L, Sokol L, Kessel R, Caceres G, Gundabolu K, Tamari R, Gordon S, Mantzaris I, Jodlowski T, Yu Y, **g X, Polineni R, Bhatia K, Pellagatti A, Boultwood J, Kambhampati S, Steidl U, Stein C, Ju W, Liu G, Kenny P, List A, Bitzer M, Verma A (2013) miR-21 mediates hematopoietic suppression in MDS by activating TGF-beta signaling. Blood 121(15):2875–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi E, Bulgarelli J, Ruberti S, Rontauroli S, Sacchi G, Norfo R, Pennucci V, Zini R, Salati S, Prudente Z, Ferrari S, Manfredini R (2015) MYB controls erythroid versus megakaryocyte lineage fate decision through the miR-486-3p-mediated downregulation of MAF. Cell Death Differ 22(12):1906–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713

    Article  CAS  PubMed  Google Scholar 

  • Bray PF, McKenzie SE, Edelstein LC, Nagalla S, Delgrosso K, Ertel A, Kupper J, **g Y, Londin E, Loher P, Chen H-W, Fortina P, Rigoutsos I (2013) The complex transcriptional landscape of the anucleate human platelet. BMC Genomics 14(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P, D’Angelo A, Naldini L (2007) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110(13):4144–4152

    Article  CAS  PubMed  Google Scholar 

  • Bruchova H, Merkerova M, Prchal JT (2008) Aberrant expression of microRNA in polycythemia vera. Haematologica 93(7):1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW II, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618

    Article  PubMed  CAS  Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94

    Article  CAS  PubMed  Google Scholar 

  • Chapnik E, Rivkin N, Mildner A, Beck G, Pasvolsky R, Metzl-Raz E, Birger Y, Amir G, Tirosh I, Porat Z, Israel LL, Lellouche E, Michaeli S, Lellouche J-P, Izraeli S, Jung S, Hornstein E (2014) miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. eLife. 3:e01964

    Google Scholar 

  • Chyrchel B, Toton-Zuranska J, Kruszelnicka O, Chyrchel M, Mielecki W, Kolton-Wroz M, Wolkow P, Surdacki A (2014) Association of plasma miR-223 and platelet reactivity in patients with coronary artery disease on dual antiplatelet therapy: a preliminary report. Platelets 26(6):593–597

    Article  PubMed  CAS  Google Scholar 

  • Corduan A, Ple H, Laffont B, Wallon T, Plante I, Landry P, Provost P (2015) Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation. Thromb Haemost 113(5):1046–1059

    Article  PubMed  Google Scholar 

  • Cox D, Pontes TB, Moreira-Nunes CFA, Maués JHS, Lamarão LM, de Lemos JA, Montenegro RC, Burbano RM (2015) The miRNA profile of platelets stored in a blood bank and its relation to cellular damage from storage. PLoS One. 10(6):e0129399

    Google Scholar 

  • Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110(3):483–495

    Article  CAS  PubMed  Google Scholar 

  • de Boer HC, van Solingen C, Prins J, Duijs JM, Huisman MV, Rabelink TJ, van Zonneveld AJ (2013) Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J 34(44):3451–3457

    Article  PubMed  CAS  Google Scholar 

  • Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, Yost CC, Rubner FJ, Albertine KH, Swoboda KJ, Fratto CM, Tolley E, Kraiss LW, McIntyre TM, Zimmerman GA, Weyrich AS (2005) Esca** the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122(3):379–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336(6078):237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doebele C, Bonauer A, Fischer A, Scholz A, Reiss Y, Urbich C, Hofmann WK, Zeiher AM, Dimmeler S (2010) Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 115(23):4944–4950

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Zhan Q, Song B, Zeng S, Zhou J, Long Y, Lu J, Li Z, Yuan M, Chen X, Yang Q, **a J (2014) Detection of platelet microRNA expression in patients with diabetes mellitus with or without ischemic stroke. J Diabetes Complications 28(5):705–710

    Article  PubMed  Google Scholar 

  • Duchez AC, Boudreau LH, Bollinger J, Belleannee C, Cloutier N, Laffont B, Mendoza-Villarroel RE, Levesque T, Rollet-Labelle E, Rousseau M, Allaeys I, Tremblay JJ, Poubelle PE, Lambeau G, Pouliot M, Provost P, Soulet D, Gelb MH, Boilard E (2015) Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci U S A 112(27):E3564–E3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726

    Article  CAS  PubMed  Google Scholar 

  • Edelstein LC, Bray PF (2011) MicroRNAs in platelet production and activation. Blood 117(20):5289–5296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, Bergeron A, Kong X, Nagalla S, Mohandas N, Cohen DE, Dong JF, Shaw C, Bray PF (2013) Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med 19(12):1609–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elgheznawy A, Shi L, Hu J, Wittig I, Laban H, Pircher J, Mann AW, Provost P, Randriamboavonjy V, Fleming I (2015) Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. Circ Res 117(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J (2003) Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 22(17):4478–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L (2004) Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 103(10):3700–3709

    Article  CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garchow BG, Bartulos Encinas O, Leung YT, Tsao PY, Eisenberg RA, Caricchio R, Obad S, Petri A, Kauppinen S, Kiriakidou M (2011) Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med 3(10):605–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgantas RW III, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 104(8):2750–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gidlöf O, van der Brug M, Ohman J, Gilje P, Olde B, Wahlestedt C, Erlinge D (2013) Platelets activated during myocardial infarction release functional miRNA which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 121(19):3908–3917

    Article  PubMed  CAS  Google Scholar 

  • Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF (2003) Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood 101(6):2285–2293

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  • Hottz ED, Lopes JF, Freitas C, Valls-de-Souza R, Oliveira MF, Bozza MT, Da Poian AT, Weyrich AS, Zimmerman GA, Bozza FA, Bozza PT (2013) Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 122(20):3405–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, **ao T, Schafer J, Lee ML, Schmittgen TD, Nana-Sinkam SP, Jarjoura D, Marsh CB (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3(11):e3694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ichimura A, Ruike Y, Terasawa K, Shimizu K, Tsujimoto G (2010) MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of K562 cells. Mol Pharmacol 77(6):1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Italiano JE Jr, Mairuhu AT, Flaumenhaft R (2010) Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 17(6):578–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain S, Kapetanaki MG, Raghavachari N, Woodhouse K, Yu G, Barge S, Coronnello C, Benos PV, Kato GJ, Kaminski N, Gladwin MT (2013) Expression of regulatory platelet microRNAs in patients with sickle cell disease. PLoS One 8(4):e60932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694

    Article  CAS  PubMed  Google Scholar 

  • Kai ZS, Pasquinelli AE (2010) MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol 17(1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Kamat V, Paluru P, Myint M, French DL, Gadue P, Diamond SL (2014) MicroRNA screen of human embryonic stem cell differentiation reveals miR-105 as an enhancer of megakaryopoiesis from adult CD34+ cells. Stem Cells 103419(5):1337–1346

    Article  Google Scholar 

  • Kondkar AA, Bray MS, Leal SM, Nagalla S, Liu DJ, ** Y, Dong JF, Ren Q, Whiteheart SW, Shaw C, Bray PF (2010) VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 8(2):369–378

    Article  CAS  PubMed  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    CAS  PubMed  Google Scholar 

  • Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270(8):1628–1644

    Article  CAS  PubMed  Google Scholar 

  • Labbaye C, Spinello I, Quaranta MT, Pelosi E, Pasquini L, Petrucci E, Biffoni M, Nuzzolo ER, Billi M, Foà R, Brunetti E, Grignani F, Testa U, Peschle C (2008) A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 10(7):788–801

    Article  CAS  PubMed  Google Scholar 

  • Laffont B, Corduan A, Plé H, Duchez AC, Cloutier N, Boilard E, Provost P (2013) Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood 122(2):253–261

    Article  CAS  PubMed  Google Scholar 

  • Laffont B, Corduan A, Rousseau M, Duchez AC, Lee CH, Boilard E, Provost P (2015) Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost 115(1). doi:10.1160/TH15-05-0389

  • Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P (2009) Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 16(9):961–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazare SS, Wojtowicz EE, Bystrykh LV, de Haan G (2014) microRNAs in hematopoiesis. Exp Cell Res 329(2):234–238

    Article  CAS  PubMed  Google Scholar 

  • Leierseder S, Petzold T, Zhang L, Loyer X, Massberg S, Engelhardt S (2013) MiR-223 is dispensable for platelet production and function in mice. Thromb Haemost 110(6):1–8

    Article  CAS  Google Scholar 

  • Liang H, Yan X, Pan Y, Wang Y, Wang N, Li L, Liu Y, Chen X, Zhang CY, Gu H, Zen K (2015) MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3. Mol Cancer 14:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Londin ER, Hatzimichael E, Loher P, Edelstein L, Shaw C, Delgrosso K, Fortina P, Bray PF, McKenzie SE, Rigoutsos I (2014) The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome. Biol Direct 9(1):3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Londin E, Loher P, Telonis AG, Quann K, Clark P, **g Y, Hatzimichael E, Kirino Y, Honda S, Lally M, Ramratnam B, Comstock CE, Knudsen KE, Gomella L, Spaeth GL, Hark L, Katz LJ, Witkiewicz A, Rostami A, Jimenez SA, Hollingsworth MA, Yeh JJ, Shaw CA, McKenzie SE, Bray P, Nelson PT, Zupo S, Van Roosbroeck K, Keating MJ, Calin GA, Yeo C, Jimbo M, Cozzitorto J, Brody JR, Delgrosso K, Mattick JS, Fortina P, Rigoutsos I (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A 112(10):E1106–E1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J, Pretz J, Schlanger R, Wang JY, Mak RH, Dombkowski DM, Preffer FI, Scadden DT, Golub TR (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14(6):843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, Teruya-Feldstein J, Bell GW, Weinberg RA (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28(4):341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquart TJ, Wu J, Lusis AJ, Baldán Á (2013) Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 33(3):455–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  • Mencia A, Modamio-Hoybjor S, Redshaw N, Morin M, Mayo-Merino F, Olavarrieta L, Aguirre LA, del Castillo I, Steel KP, Dalmay T, Moreno F, Moreno-Pelayo MA (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 41(5):609–613

    Article  CAS  PubMed  Google Scholar 

  • Mingozzi F, Liu YL, Dobrzynski E, Kaufhold A, Liu JH, Wang Y, Arruda VR, High KA, Herzog RW (2003) Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest 111(9):1347–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modamio-Hoybjor S, Moreno-Pelayo MA, Mencia A, del Castillo I, Chardenoux S, Morais D, Lathrop M, Petit C, Moreno F (2004) A novel locus for autosomal dominant nonsyndromic hearing loss, DFNA50, maps to chromosome 7q32 between the DFNB17 and DFNB13 deafness loci. J Med Genet 41(2):e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124(14):1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, III, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322

    Google Scholar 

  • Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L, Chen J, McKnight GS, Lopez JA, Yang L, ** Y, Bray MS, Leal SM, Dong JF, Bray PF (2011) Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 117(19):5189–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro F, Gutman D, Meire E, Cáceres M, Rigoutsos I, Bentwich Z, Lieberman J (2009) miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood 114(10):2181–2192

    Article  CAS  PubMed  Google Scholar 

  • Norfo R, Zini R, Pennucci V, Bianchi E, Salati S, Guglielmelli P, Bogani C, Fanelli T, Mannarelli C, Rosti V, Pietra D, Salmoiraghi S, Bisognin A, Ruberti S, Rontauroli S, Sacchi G, Prudente Z, Barosi G, Cazzola M, Rambaldi A, Bortoluzzi S, Ferrari S, Tagliafico E, Vannucchi AM, Manfredini R, Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative I (2014) miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis. Blood 124(13):e21–e32

    Google Scholar 

  • O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL, Baltimore D (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205(3):585–594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Opalinska JB, Bersenev A, Zhang Z, Schmaier AA, Choi J, Yao Y, D’Souza J, Tong W, Weiss MJ (2010) MicroRNA expression in maturing murine megakaryocytes. Blood 116(23):128–138

    Article  CAS  Google Scholar 

  • Osman A, Hitzler WE, Ameur A, Provost P (2015a) Differential expression analysis by RNA-Seq reveals perturbations in the platelet mRNA transcriptome triggered by pathogen reduction systems. PLoS One 10(7):e0133070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osman A, Hitzler WE, Meyer CU, Landry P, Corduan A, Laffont B, Boilard E, Hellstern P, Vamvakas EC, Provost P (2015b) Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function. Platelets 26(2):154–163

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Liang H, Liu H, Li D, Chen X, Li L, Zhang C-Y, Zen K (2013) Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol 192(1):437–446

    Article  PubMed  CAS  Google Scholar 

  • Paralkar VR, Mishra T, Luan J, Yao Y, Kossenkov AV, Anderson SM, Dunagin M, Pimkin M, Gore M, Sun D, Konuthula N, Raj A, An X, Mohandas N, Bodine DM, Hardison RC, Weiss MJ (2014) Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 123(12):1927–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X (2011a) Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478(7369):404–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y (2011b) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 121(7):2921–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigoutsos I, Tsirigos A (2011) MicroRNA Target Prediction. In: Slack FJ (ed) MicroRNAs in development and cancer, vol 1, Molecular medicine and medicinal chemistry. Imperial College Press, Hackensack, NJ, pp 237–264

    Chapter  Google Scholar 

  • Risitano A, Beaulieu LM, Vitseva O, Freedman JE (2012) Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 119(26):6288–6295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romania P, Lulli V, Pelosi E, Biffoni M, Peschle C, Marziali G (2008) MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br J Haematol 143(4):570–580

    CAS  PubMed  Google Scholar 

  • Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS (2011) Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118(14):e101–e111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satpathy AT, Chang HY (2015) Long noncoding RNA in hematopoiesis and immunity. Immunity 42(5):792–804

    Article  CAS  PubMed  Google Scholar 

  • Schmiedel JM, Klemm SL, Zheng Y, Sahay A, Bluthgen N, Marks DS, van Oudenaarden A (2015) Gene expression. MicroRNA control of protein expression noise. Science 348(6230):128–132

    Article  CAS  PubMed  Google Scholar 

  • Scholer N, Langer C, Dohner H, Buske C, Kuchenbauer F (2010) Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol 38(12):1126–1130

    Article  PubMed  CAS  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    Article  CAS  PubMed  Google Scholar 

  • Shan Z, Qin S, Li W, Wu W, Yang J, Chu M, Li X, Huo Y, Schaer GL, Wang S, Zhang C (2015) An endocrine genetic signal between blood cells and vascular smooth muscle cells: role of microRNA-223 in smooth muscle function and atherogenesis. J Am Coll Cardiol 65(23):2526–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi R, Ge L, Zhou X, Ji WJ, Lu RY, Zhang YY, Zeng S, Liu X, Zhao JH, Zhang WC, Jiang TM, Li YM (2013) Decreased platelet miR-223 expression is associated with high on-clopidogrel platelet reactivity. Thromb Res 131(6):508–513

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Zhou X, Ji WJ, Zhang YY, Ma YQ, Zhang JQ, Li YM (2015) The emerging role of miR-223 in platelet reactivity: implications in antiplatelet therapy. Biomed Res Int 2015:981841

    PubMed  PubMed Central  Google Scholar 

  • Shrivastava M (2009) The platelet storage lesion. Transfus Apher Sci 41(2):105–113

    Article  PubMed  Google Scholar 

  • Simon LM, Edelstein LC, Nagalla S, Woodley AB, Chen ES, Kong X, Ma L, Fortina P, Kunapuli S, Holinstat M, McKenzie SE, Dong JF, Shaw CA, Bray PF (2014) Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 123(16):e37–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sondermeijer BM, Bakker A, Halliani A, de Ronde MW, Marquart AA, Tijsen AJ, Mulders TA, Kok MG, Battjes S, Maiwald S, Sivapalaratnam S, Trip MD, Moerland PD, Meijers JC, Creemers EE, Pinto-Sietsma SJ (2011) Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340* and miRNA624*. PLoS One 6(10):e25946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31(5):239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, Buckstein R, Lam W, Humphries RK, Karsan A (2010) Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 16(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Starczynowski DT, Kuchenbauer F, Wegrzyn J, Rouhi A, Petriv O, Hansen CL, Humphries RK, Karsan A (2011) MicroRNA-146a disrupts hematopoietic differentiation and survival. Exp Hematol 39(2):167–178.e164

    Article  CAS  PubMed  Google Scholar 

  • Stratz C, Nührenberg T, Fiebich BL, Amann M, Kumar A, Binder H, Hoffmann I, Valina C, Hochholzer W, Trenk D, Neumann FJ (2014) Controlled type II diabetes mellitus has no major influence on platelet micro-RNA expression. Results from micro-array profiling in a cohort of 60 patients. Thromb Haemost 111(5):902–911

    Article  CAS  PubMed  Google Scholar 

  • Teruel-Montoya R, Kong X, Abraham S, Ma L, Kunapuli SP, Holinstat M, Shaw CA, McKenzie SE, Edelstein LC, Bray PF (2014) MicroRNA expression differences in human hematopoietic cell lineages enable regulated transgene expression. PLoS One 9(7):e102259

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas KL, Honeycutt E, Shaw LK, Peterson ED (2010) Racial differences in long-term survival among patients with coronary artery disease. Am Heart J 160(4):744–751

    Article  PubMed  Google Scholar 

  • Thon JN, Devine DV (2007) Translation of glycoprotein IIIa in stored blood platelets. Transfusion 47(12):2260–2270

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984

    Article  CAS  PubMed  Google Scholar 

  • van der Ree MH, van der Meer AJ, de Bruijne J, Maan R, van Vliet A, Welzel TM, Zeuzem S, Lawitz EJ, Rodriguez-Torres M, Kupcova V, Wiercinska-Drapalo A, Hodges MR, Janssen HL, Reesink HW (2014) Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res 111:53–59

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, Li H, Weiss MJ, Ren X, Fan G-C (2012) Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res 94(2):379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JA, Esa N, Pidikiti R, Freedman JE, Keaney JF, Tanriverdi K, Vitseva O, Ambros V, Lee R, McManus DD (2013) Circulating cell and plasma microRNA profiles differ between non-ST-segment and ST-segment-elevation myocardial infarction. Fam Med Med Sci Res 2(2):108

    PubMed  PubMed Central  Google Scholar 

  • Warshaw AL, Laster L, Shulman NR (1966) The stimulation by thrombin of glucose oxidation in human platelets. J Clin Invest 45(12):1923–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA (2009) Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 7(2):241–246

    Article  CAS  PubMed  Google Scholar 

  • Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH (2005) MicroRNA expression in zebrafish embryonic development. Science 309(5732):310–311

    Article  CAS  PubMed  Google Scholar 

  • Willeit P, Zampetaki A, Dudek K, Kaudewitz D, King A, Kirkby NS, Crosby-Nwaobi R, Prokopi M, Drozdov I, Langley SR, Sivaprasad S, Markus HS, Mitchell JA, Warner TD, Kiechl S, Mayr M (2013) Circulating microRNAs as novel biomarkers for platelet activation. Circ Res 112(4):595–600

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Gnatenko DV, Ju J, Hitchcock IS, Martin DW, Zhu W, Bahou WF (2012) Systematic analysis of microRNA fingerprints in thrombocythemic platelets using integrated platforms. Blood 120(17):3575–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XY, Chen JY, Zheng ZW, Wu H, Li LW, Zhang ZW, Chen ZH, Lin QX, Han YL, Zhong SL (2013) Plasma miR-126 as a potential marker predicting major adverse cardiac events in dual antiplatelet-treated patients after percutaneous coronary intervention. EuroIntervention 9(5):546–554

    Article  PubMed  Google Scholar 

  • Yu S, Deng G, Qian D, **e Z, Sun H, Huang D, Li Q (2014) Detection of apoptosis-associated microRNA in human apheresis platelets during storage by quantitative real-time polymerase chain reaction analysis. Blood Transfus 12(4):541–547

    PubMed  PubMed Central  Google Scholar 

  • Yu S, Huang H, Deng G, **e Z, Ye Y, Guo R, Cai X, Hong J, Qian D, Zhou X, Tao Z, Chen B, Li Q (2015) miR-326 targets antiapoptotic Bcl-xL and mediates apoptosis in human platelets. PLoS One 10(4):e0122784

    Google Scholar 

  • Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, Farber DB (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4(3):e4722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, Mayr A, Weger S, Schett G, Shah A, Boulanger CM, Willeit J, Chowienczyk PJ, Kiechl S, Mayr M (2012) Prospective study on circulating microRNAs and risk of myocardial infarction. J Am Coll Cardiol 60(4):290–299

    Article  CAS  PubMed  Google Scholar 

  • Zhai PF, Wang F, Su R, Lin HS, Jiang CL, Yang GH, Yu J, Zhang JW (2014) The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor alpha (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem 289(33):22600–22613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-Y, Zhou X, Ji W-J, Shi R, Lu R-Y, Li J-L, Yang G-H, Luo T, Zhang J-Q, Zhao J-H, Jiang T-M, Li Y-M (2014) Decreased circulating microRNA-223 level predicts high on-treatment platelet reactivity in patients with troponin-negative non-ST elevation acute coronary syndrome. J Thromb Thrombolysis 38(1):65–72

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard C. Edelstein Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Edelstein, L.C., Bray, P.F. (2017). Noncoding RNAs in Platelet Biology. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_18

Download citation

Publish with us

Policies and ethics

Navigation