Textile Structural Composites: From 3-D to 1-D Fiber Architecture

  • Chapter
  • First Online:
The Structural Integrity of Carbon Fiber Composites

Abstract

With its outstanding specific strength and modulus, over half a century of rapid development, carbon fiber has evolved from a laboratory curiosity to a material of choice for the structural reinforcement of aerospace structures, aircraft, high-performance sporting goods such as formula racing cars, and giant windmill blades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 203.29
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 252.15
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 348.14
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D.R. Tenney, et~al., NASA composite materials development: lessons learned and future challenges. NASA Report LF99-9370, 2009

    Google Scholar 

  2. L. Gause, J. Alper, Braided to net section graphite/epoxy composite shapes. J. Compos. Technol. Res. 10(2), 33–46 (1988)

    Article  Google Scholar 

  3. T. Tan, et~al., An integrated design methodology for fabric composite structural components, in Proceedings of the Annual Meeting of the ASME—Advanced Composites and Processing Technology, vol. 5, 1988, pp. 37–43

    Google Scholar 

  4. T.H. Walker et~al., Advanced Technology Composite Fuselage—Structural Performance (Lanley Research Center, Hampton, VA, 1997)

    Google Scholar 

  5. R. Palmer, Techno-economic requirements for composite aircraft components, in Innovative Composite Aircraft Primary Structure, 1994

    Google Scholar 

  6. F. Ko, Textiles Composites for Automotive Structural Components, in Textile Advances in the Automotive Industry, ed. by R. Shishoo (Woodhead Publishing, Cambridge, 2008)

    Google Scholar 

  7. F. Ko, 3-D Textile Reinforcements in Composite Materials, in 3-D Textile Reinforcements in Composite Materials, ed. by A. Miravete (Woodhead Publishing, Cambridge, 1999)

    Google Scholar 

  8. F. Scardino, An introduction to textile structures and their behavior, in Textile Structural Composites, ed. by T.W. Chou, F.K. Ko. Composite Materials Series, vol 3 (Elsevier, Oxford, 1989)

    Google Scholar 

  9. F.K. Ko, G. Du, Textile Preforming, in Handbook of Composites, ed. by S.T. Peters (Springer, New York, 1998), pp. 397–424

    Chapter  Google Scholar 

  10. F. Ko, G. Du, Processing of Textile Preforms, in Advanced Composites Manufacturing, ed. by T.G. Gutowski (Wiley, New York, 1997)

    Google Scholar 

  11. K. Potter, The influence of accurate stretch data for reinforcements on the production of complex structural mouldings: Part 1. Deformation of aligned sheets and fabrics. Composites 10(3), 161–167 (1979)

    Article  Google Scholar 

  12. F.L. Scardino, F.K. Ko, Triaxial woven fabrics Part I: behavior under tensile, shear, and burst deformation. Text. Res. J. 51(2), 80–89 (1981)

    Article  Google Scholar 

  13. N.F. Dow, Woven Fabric Reinforced Composites for Automotive Applications. NSF Grant No. DMR-8212867, MSC TFR 1605/81021985 (1985)

    Google Scholar 

  14. S. Mccarthy, Y.R. Kim, Resin flow through fibre reinforcement during composite processing, in the 5th Textile Structural Composites Symposium, Drexel University, Philadelphia, PA, 1991

    Google Scholar 

  15. A. Loos, M. Weldemen, RTM process modeling for advanced fiber architectures, in Advanced Composite Materials: New Developments and Applications, Seventh Annual ASM/ESD Advanced Composite, Detroit, MI, 1991, pp. 209–216

    Google Scholar 

  16. T.G.P. Gutowski, Advanced Composites Manufacturing (John Wiley & Sons, New York, 1997)

    Google Scholar 

  17. F.T. Peirce, The geometry of cloth structure. J. Text. Inst. Trans. 28(3), T45–T96 (1937)

    Article  Google Scholar 

  18. L.E. McAllister, W.L. Lachman, Fabrication of Composites, in Handbook of Composites, ed. by A. Kelly, S.T. Mileiko (Elsevier, New York, 1983), p. 109

    Google Scholar 

  19. B. Paul, Prediction of the elastic constants of multiphase materials. Trans. AIME 218, 36–41 (1960)

    Google Scholar 

  20. J. Halpin, K. Jerine, J. Whitney, The laminate analogy for 2 and 3 dimensional composite materials. J. Compos. Mater. 5(1), 36–49 (1971)

    Article  Google Scholar 

  21. J. Aboudi, Minimechanics of tri-orthogonally fibre-reinforced composites: overall elastic and thermal properties. Fibre Sci. Technol. 21(4), 277–293 (1984)

    Article  Google Scholar 

  22. S. Chatterjee, J. Kibler, An Analytical Model for Three-Dimensionally Reinforced Graphite Composites, in Modern Developments in Composite Materials and Structures, ed. by J.R. Vinson (ASME, New York, 1979), pp. 269–287

    Google Scholar 

  23. B. Rosen, S. Chatterjee, J. Kibler, An analysis model for spatially oriented fiber composites, in Composite Materials: Testing and Design, ASTM STP, 1977, vol. 617, pp. 243–254

    Google Scholar 

  24. A. Ross, Designing with three dimensional composites. ASME Paper (74-DE), 1975, p. 25

    Google Scholar 

  25. P. Paramasivam, J.I. Curiskis, S. Valliappan, Micromechanics analysis of fibre reinforced cement composites. Fibre Sci. Technol. 20(2), 99–120 (1984)

    Article  Google Scholar 

  26. M.S. Aly-Hassan et~al., Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance. Carbon 41(5), 1069–1078 (2003)

    Article  Google Scholar 

  27. T. Zeng, L.-Z. Wu, L.-C. Guo, A finite element model for failure analysis of 3D braided composites. Mater. Sci. Eng. A 366(1), 144–151 (2004)

    Article  Google Scholar 

  28. L. Chen, X. Tao, C. Choy, Mechanical analysis of 3-D braided composites by the finite multiphase element method. Compos. Sci. Technol. 59(16), 2383–2391 (1999)

    Article  Google Scholar 

  29. A. Kregers, Y.G. Melbardis, Determination of the deformability of three-dimensionally reinforced composites by the stiffness averaging method. Mech. Compos. Mater. 14(1), 1–5 (1978)

    Google Scholar 

  30. A. Kreger, G. Teters, Use of averaging methods to determine the viscoelastic properties of spatially reinforced composites. Mech. Compos. Mater. 15(4), 377–383 (1980)

    Article  Google Scholar 

  31. C.-L. Ma, J.-M. Yang, T.-W. Chou, Elastic stiffness of three-dimensional braided textile structural composites, ed. by J.M. Whitney. in Composite Materials: Testing Design (Seventh Conference) ASTM STP 893, (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 404–421

    Google Scholar 

  32. J.-M. Yang, C.-L. Ma, T.-W. Chou, Fiber inclination model of three-dimensional textile structural composites. J. Compos. Mater. 20(5), 472–484 (1986)

    Article  Google Scholar 

  33. T.J. Whitney, T.-W. Chou, Modeling of 3-D angle-interlock textile structural composites. J. Compos. Mater. 23(9), 890–911 (1989)

    Article  Google Scholar 

  34. R. Crane, E. Camponeschi Jr., Experimental and analytical characterization of multidimensionally braided graphite/epoxy composites. Exp. Mech. 26(3), 259–266 (1986)

    Article  Google Scholar 

  35. G.-W. Du, T.-W. Chou, P. Popper, Analysis of three-dimensional textile preforms for multidirectional reinforcement of composites. J. Mater. Sci. 26(13), 3438–3448 (1991)

    Article  Google Scholar 

  36. F.K. Ko, Three-Dimensional Fabrics for Composites, in Textile Structural Composites, ed. by T.W. Chou, F. Wo (Elsevier, Amsterdam, 1989), pp. 129–171

    Google Scholar 

  37. W. Li, M. Hammad, A. El-Shiekh, Structural analysis of 3-D braided preforms for composites Part I: the four-step preforms. J. Text. Inst. 81(4), 491–514 (1990)

    Article  Google Scholar 

  38. W. Li, M. Hammad, A. El-Shiekh, Structural analysis of 3-D braided preforms for composites part II: the two-step preforms. J. Text. Inst. 81(4), 515–537 (1990)

    Article  Google Scholar 

  39. C. Pastore, F. Ko, Modelling of textile structural composites Part I: Processing-science model for three-dimensional braiding. J. Text. Inst. 81(4), 480–490 (1990)

    Article  Google Scholar 

  40. F. Ko, D. Whyte, C. Pastore, Control of fibre architecture for tough net-shaped structural composites, in ASTM STP, 1988, vol. 979, pp. 290–298

    Google Scholar 

  41. T. Tan, C. Pastore, F. Ko, Engineering design of tough ceramic matrix composites for turbine components. J. Eng. Gas Turbines Power 113(2), 312–317 (1991)

    Article  Google Scholar 

  42. G. Du, F. Ko, Geometric modeling of 3-D braided preforms for composites, in Textile Structural Composites Symposium, Drexel Laboratory, Philadelphia, PA, 1991

    Google Scholar 

  43. G.-W. Du, F.K. Ko, Unit cell geometry of 3-D braided structures. J. Reinf. Plast. Compos. 12(7), 752–768 (1993)

    Article  Google Scholar 

  44. C. Lei, Y.-J. Cai, F. Ko, Finite element analysis of 3-D braided composites. Adv. Eng. Softw. 14(3), 187–194 (1992)

    Article  Google Scholar 

  45. Y.T. Gao, F.K. Ko, H. Hu, Integrated design for manufacturing of braided preforms for advanced composites Part II: 3D braiding. Appl. Compos. Mater. 20(6), 1065–1075 (2013)

    Article  Google Scholar 

  46. T.-W. Chou, F.K. Ko, Textile Structural Composites (Elsevier, Amsterdam, 1989)

    Google Scholar 

  47. T. Tan, C.M. Pastore, F.K. Ko, Engineering design of tough ceramic matrix composites for turbine components, in ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers, 1989

    Google Scholar 

  48. M.J. Fedro, C. Gunther, F.K. Ko, Mechanical and Analytical Screening of Braided Composites for Transport Fuselage Applications, 1991.

    Google Scholar 

  49. D.A. Baker, T.G. Rials, Recent advances in low-cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 130(2), 713–728 (2013)

    Article  Google Scholar 

  50. J.F. Kadla et~al., Lignin-Based Carbon Fibers, in Chemical Modification, Properties, and Usage of Lignin (Springer, New York, 2002), pp. 121–137

    Chapter  Google Scholar 

  51. J.F. Kadla et~al., Lignin-based carbon fibers for composite fiber applications. Carbon 40(15), 2913–2920 (2002)

    Article  Google Scholar 

  52. C.D. Warren, 2011 Annual Progress Report for Lightweighting Materials, in 3. Polymer Composites, 2011, pp. 3–41

    Google Scholar 

  53. F. Ko et~al., Lignin-Based Composite Carbon Nanofibers, in Lignin in Polymer Composites, ed. by O. Faruk, M. Sain (William Andrew, Norwich, NY, 2015)

    Google Scholar 

  54. R. Ruiz-Rosas et~al., The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon 48(3), 696–705 (2010)

    Article  Google Scholar 

  55. M. Lallave et~al., Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Adv. Mater. 19(23), 4292 (2007)

    Article  Google Scholar 

  56. I. Dallmeyer et~al., Preparation and characterization of interconnected, kraft lignin‐based carbon fibrous materials by electrospinning. Macromol. Mater. Eng. 299(5), 540–551 (2014)

    Article  Google Scholar 

  57. A. Goudarzi, L.-T. Lin, F.K. Ko, X-Ray diffraction analysis of kraft lignins and lignin-derived carbon nanofibers. J. Nanotechnol. Engineer. Med. 5(2), 021006 (2014)

    Article  Google Scholar 

  58. L. Lin, Y. Li, F.K. Ko, Fabrication and properties of lignin based carbon nanofiber. J. Fiber Bioeng. Inform. 6(4), 335–347 (2013)

    Google Scholar 

  59. S.-X. Wang et~al., Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 5(23), 12275–12282 (2013)

    Article  Google Scholar 

  60. F. Ko et~al., Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 15(14), 1161–1165 (2003)

    Article  Google Scholar 

  61. W.H. Weber, R. Merlin, Raman Scattering in Materials Science (Springer, New York, 2000)

    Book  Google Scholar 

  62. C.N.R. Rao, A.K. Cheetham, Science and technology of nanomaterials: current status and future prospects. J. Mater. Chem. 11(12), 2887–2894 (2001)

    Article  Google Scholar 

  63. D. Balageas, Introduction to Structural Health Monitoring, in Structural Health Monitoring, ed. by D. Balageas, C.-P. Fritzen, A. Güemes (Wiley-ISTE, London, 2006), pp. 13–44

    Chapter  Google Scholar 

  64. S. Soltanian et~al., Highly piezoresistive compliant nanofibrous sensors for tactile and epidermal electronic applications. J. Mater. Res. 30(01), 121–129 (2015)

    Article  Google Scholar 

  65. R. Foedinger, et~al., High strength nanomaterials fiber for lightweight composite missile cases, in 230th ACS National Meeting, Washington, DC, 2005

    Google Scholar 

  66. F. Schreiber, et~al., Novel three-dimensional braiding approach and its products, in 17th International Conference on Composite Materials, Edinburgh, 2009

    Google Scholar 

  67. F. Ko, et~al., Recent advancements in three-dimensional braiding, in Proceedings of the 1st World Conference on 3D-Fabrics and their Applications, 2008

    Google Scholar 

  68. R. Dow, New concept for multiple directional fabric formation, in Advanced Materials: the Big Payoff, 1989, pp. 558–569

    Google Scholar 

  69. A. Bogdanovich, D. Mungalov,Recent advancements in manufacturing 3-D braided preforms and composites, in Proceedings of ACUN-4 Composite Systems-Macro Composites, Micro Composites, Nanocomposites, University of New South Wales, Sydney, NSW, 2002

    Google Scholar 

  70. Staff, The markets: automotive (2015). CompositesWorld. Retrieved on 12 October 2015. http://www.compositesworld.com/articles/the-markets-automotive-2015

  71. T. Johnson, History of Carbon Fiber: The Growth and Future of Carbon Fiber. Retrieved on 1 September 2015. http://composite.about.com/od/Industry/a/History-Of-Carbon-Fiber.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank K. Ko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ko, F.K., Wan, L.Y. (2017). Textile Structural Composites: From 3-D to 1-D Fiber Architecture. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_27

Download citation

Publish with us

Policies and ethics

Navigation